Exploring pressure-dependent kinetics of phase transitions in Si and Ge using machine learning interatomic potentials
ORAL
Abstract
–
Publication: A. Fantasia et al.; "Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium". J. Chem. Phys. 7 July 2024; 161 (1): 014110. https://doi.org/10.1063/5.0214588.<br><br>F. Rovaris et al.; "Unraveling the Atomic-Scale Pathways Driving Pressure-Induced Phase Transitions in Silicon". arXiv:2408.12358 (2024). https://doi.org/10.48550/arXiv.2408.12358; submitted to Materials Today Nano.<br><br>G. Ge, F. Rovaris et al.; "Silicon phase transitions in nanoindentation: Advanced molecular dynamics simulations with machine learning phase recognition". Acta Materialia, Vol. 263, 2024, 119465, ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2023.119465.
Presenters
-
Andrea Fantasia
University of Milan, Bicocca
Authors
-
Andrea Fantasia
University of Milan, Bicocca
-
Fabrizio Rovaris
Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano-Bicocca
-
Anna Marzegalli
Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano-Bicocca, University of Milano Bicocca
-
Penghao Xiao
Dept. of Physics & Atmospheric Science, Dalhousie University, 1453 Lord Dalhousie Drive, B3H 4R2, Halifax, NS, Canada, Dalhousie University
-
Emilio Scalise
Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milan, Bicocca
-
Francesco Montalenti
Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano Bicocca