Machine Learning, Molecular Dynamics and Excitons I

ORAL · VIR-G08 · ID: 3105161







Presentations

  • Ab-inito study of biexcitons using exciton product basis.

    ORAL

    Presenters

    • Namana Venkatareddy

      Indian Institute Of Science

    Authors

    • Namana Venkatareddy

      Indian Institute Of Science

    • Robin Bajaj

      Indian Institute of Science, Indian Institute Of Science

    • Hulikal R Krishnamurthy

      Indian Institute of Science Bangalore

    • Manish Jain

      Indian Institute of Science Bangalore

    View abstract →

  • THEORETICAL STUDY OF SPIN DEFECTS WITH AN HUBBARD MODEL COMBINED WITH DENSITY FUNCTIONAL THEORY CALCULATIONS

    ORAL

    Publication: Thermodynamical stability of carbon-based defects in α boron from first principles
    Y. Cho, J. Sjakste, O. Hardouin Duparc, N. Vast
    Solid State Sciences 154, 107610 (2024) https://doi.org/10.1016/j.solidstatesciences.2024.107610

    The effect of pressure on the intrinsic optical dynamics of NV- colored centers in diamond, Alan Custodio dos Reis Souza, Mariya Romanova, Michele Casula, Jelena Sjakste, and Nathalie Vast (in preparation).

    New theoretical method to design quasi-atomic systems in the band gap of semiconductors by combining density functional theory (DFT) and the Hubbard effective Hamiltonian (in preparation)
    Y. Cho, Alan Custodio dos Reis Souza, Mariya Romanova, J. Sjakste, Michele Casula, N. Vast

    Presenters

    • Nathalie Vast

      CEA-Saclay

    Authors

    • Nathalie Vast

      CEA-Saclay

    • Yeonsoo Cho

      Ecole Polytechnique

    • Alan CUSTODIO DOS REIS SOUZA

      LSi

    • Jelena Sjakste

      CNRS - Laboratoire des Solides Irradies (LSI)

    • Michele Casula

      CNRS

    • Mariya ROMANOVA

      CEA Cadarache

    View abstract →

  • Contending with concurrency across programming languages

    ORAL

    Publication: 1. "Concurrency without guardrails, no-GIL Python and Fortran", Rohit Goswami, The International Journal of High Performance Computing Applications [to be submitted]

    Presenters

    • Rohit Goswami

      University of Iceland

    Authors

    • Rohit Goswami

      University of Iceland

    View abstract →

  • Application of biquaternionic signal processing to non-destructive testing of (3+1)D with hysteresis effects

    ORAL

    Publication: Furui, S. and Dos Santos, S.: Application of Quaternion Neural Network to Time Reversal Based Nonlinear Elastic Wave Spectroscopy, INAE, 8, 183-199, (2023).
    Furui, S. : On the Quadratic Phase Quaternion Domain Fourier Transform and on the Clifford algebra of $R^{3,1}$, arXiv:2310.10680 v4 (2023).
    Furui,S. and Dos Santos,S.: A Memosducer Based biquaternionic Signal Processing for Nonlinear Ultrasonics Imaging
    Applied to Nondestructive Testing, UCCF-JS 2024, Taipei, 22-26 September (2024)..
    Dos Santos and Furui,S.: Quaternion Signal Processing for Nonlinear Ultrasonics, BEC 2024; Tallinn, Estonia, 2-6 October (2024).
    Furui, S. and Dos Santos, S.: Biquaternion Signal Processing for Nonlinear Ultrasonics, submitted to arXiv [hep-lat] submit/5950738, 24. October (2024)

    Presenters

    • Sadataka Furui

      Teikyo University

    Authors

    • Sadataka Furui

      Teikyo University

    • Serge Dos Santos

      INSA val de Loire

    View abstract →

  • Exploring pressure-dependent kinetics of phase transitions in Si and Ge using machine learning interatomic potentials

    ORAL

    Publication: A. Fantasia et al.; "Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium". J. Chem. Phys. 7 July 2024; 161 (1): 014110. https://doi.org/10.1063/5.0214588.

    F. Rovaris et al.; "Unraveling the Atomic-Scale Pathways Driving Pressure-Induced Phase Transitions in Silicon". arXiv:2408.12358 (2024). https://doi.org/10.48550/arXiv.2408.12358; submitted to Materials Today Nano.

    G. Ge, F. Rovaris et al.; "Silicon phase transitions in nanoindentation: Advanced molecular dynamics simulations with machine learning phase recognition". Acta Materialia, Vol. 263, 2024, 119465, ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2023.119465.

    Presenters

    • Andrea Fantasia

      University of Milan, Bicocca

    Authors

    • Andrea Fantasia

      University of Milan, Bicocca

    • Fabrizio Rovaris

      Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano-Bicocca

    • Anna Marzegalli

      Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano-Bicocca, University of Milano Bicocca

    • Penghao Xiao

      Dept. of Physics & Atmospheric Science, Dalhousie University, 1453 Lord Dalhousie Drive, B3H 4R2, Halifax, NS, Canada, Dalhousie University

    • Emilio Scalise

      Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milan, Bicocca

    • Francesco Montalenti

      Dept. of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy, University of Milano Bicocca

    View abstract →