Real-time Autonomous Optimization of Thin Film Growth
ORAL
Abstract
–
Publication: 1] Xu. X, Wang. W. Multiferroic hexagonal ferrites (h-RFeO3, R = Y, Dy-Lu): a brief experimental review.<br>Mod. Phys. Lett. B. 28 (21) (2014).<br>[2] H. Yokota, T. Nozue, S. Nakamura, M. Fukunaga, and A. Fuwa, Examination of Ferroelectric and<br>Magnetic Properties of Hexagonal ErFeO3 Thin Films, Jpn. J. Appl. Phys. 54, 10NA10 (2015).<br>[3] K. K. Sinha, Growth and Characterization of Hexagonal Rare-Earth Ferrites (h-RFeO3; R = Sc, Lu, Yb),<br>The University of Nebraska - Lincoln PP - United States -- Nebraska, 2018.<br>[4] J. Kasahara, T. Katayama, S. Mo, A. Chikamatsu, Y. Hamasaki, S. Yasui, M. Itoh, and T. Hasegawa,<br>Room-Temperature Antiferroelectricity in Multiferroic Hexagonal Rare-Earth Ferrites, ACS Appl. Mater.<br>Interfaces 13, 4230 (2021).<br>[5] J. M. Costantini, T. Ogawa, A. S. I. Bhuian, and K. Yasuda, Cathodoluminescence Induced in Oxides by<br>High-Energy Electrons: Effects of Beam Flux, Electron Energy, and Temperature, J. Lumin. 208, 108<br>(2019).<br>[6] Liang. H. et al. Application of machine learning to reflection high-energy electron diffraction images<br>for automated structural phase mapping. Phys. Rev. Materials. 6, 063805 (2022).<br>[7] Wang. A. et al. Benchmarking active learning strategies for materials optimization and discovery.<br>Oxford Open Materials Science, 2 (1) (2022).<br>[8] Kusne. A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat.<br>Commun. 2020 111 11, 1–11 (2020).
Presenters
-
Haotong Liang
University of Maryland College Park
Authors
-
Haotong Liang
University of Maryland College Park
-
Ryan S Paxson
University of Maryland, University of Maryland, College Park
-
Yunlong Sun
The University of Tokyo
-
Aaron Kusne
University of Maryland College Park
-
Mikk Lippmaa
The University of Tokyo
-
Ichiro Takeuchi
University of Maryland College Park, University of Maryland, University of Maryland, College Park