AI for Materials Discovery II
ORAL · MAR-S37 · ID: 3091519
Presentations
-
Equivariant Multimodal Materials Modeling Using Spectroscopic and Ab-Initio Data
ORAL
–
Presenters
-
Max Aalto
Massachusetts Institute of Technology
Authors
-
Max Aalto
Massachusetts Institute of Technology
-
Tess E Smidt
Massachusetts Institute of Technology
-
-
Active learning spectral function using Bayesian Neural Network and Gaussian process
ORAL
–
Presenters
-
Niraj Aryal
Brookhaven National Laboratory (BNL)
Authors
-
Niraj Aryal
Brookhaven National Laboratory (BNL)
-
-
Unveiling intermediate metallicity in epitaxial VO2 using nano-spectroscopy aided by machine learning
ORAL
–
Presenters
-
Alyssa Bragg
University of Minnesota
Authors
-
Alyssa Bragg
University of Minnesota
-
Elihu Anouchi
Bar Ilan University
-
Liam Thompson
University of Minnesota
-
William Cho
University of Minnesota
-
Nitzan Yehudit Hirshberg
University of Minnesota
-
Brayden Lukaskawcez
University of Minnesota
-
Devon Uram
University of Minnesota, Harvard University
-
Madison Garber
University of Minnesota
-
Hayden Binger
University of Minnesota
-
Amos Sharoni
Bar Ilan University
-
Alexander S McLeod
University of Minnesota
-
-
Predicting inelastic neutron scattering spectra from the crystal structure via data-driven approach
ORAL
–
Presenters
-
Bowen Han
Oak Ridge National Laboratory
Authors
-
Bowen Han
Oak Ridge National Laboratory
-
Yongqiang Cheng
Oak Ridge National Lab, Oak Ridge National Laboratory
-
-
A Universal Deep Learning Framework for Materials X-ray Absorption Spectra
ORAL
–
Publication: arXiv:2409.19552
Presenters
-
Deyu Lu
Brookhaven National Laboratory (BNL)
Authors
-
Deyu Lu
Brookhaven National Laboratory (BNL)
-
Shubha Kharel
Brookhaven National Laboratory
-
Xiaohui Qu
Brookhaven National Laboratory (BNL)
-
Fanchen Meng
Brookhaven National Laboratory (BNL)
-
Matthew R Carbone
Brookhaven National Lab
-
-
Machine Learning Analysis of high-dimensional ARPES Data for Nd<sub>1-x</sub>Sr<sub>x</sub>NiO<sub>3</sub>
ORAL
–
Presenters
-
Yu Zhang
University of Florida
Authors
-
Yu Zhang
University of Florida
-
Yong Zhong
Stanford University
-
Nhat Huy Mai Tran
University of Florida
-
Shuyi Li
University of Florida
-
Kyuho Lee
Stanford University, Massachusetts Institute of Technology
-
Harold Y Hwang
Stanford University
-
Zhi-Xun Shen
Stanford University
-
Chunjing Jia
University of Florida
-
-
Designing Materials for Catalysis via Systematic Experiments and Artificial Intelligence
ORAL
–
Publication: G. Bellini et al., Angew. Chem. Int. Ed., DOI: 10.1002/anie.202417812
Presenters
-
Lucas Foppa
Fritz Haber Institute of the Max Planck Society, The NOMAD Laboratory at FHI, Max Planck Society
Authors
-
Lucas Foppa
Fritz Haber Institute of the Max Planck Society, The NOMAD Laboratory at FHI, Max Planck Society
-
Matthias Scheffler
The NOMAD Laboratory at FHI, Max Planck Society
-
-
Material Mapping Using Experimental Data and Crystal Graph Neural Networks
ORAL
–
Publication: Jia, X., Aziz, A., Hashimoto, Y. et al. Dealing with the big data challenges in AI for thermoelectric materials. Sci. China Mater. 67, 1173–1182 (2024).
Presenters
-
Yusuke Hashimoto
FRIS, Tohoku University
Authors
-
Yusuke Hashimoto
FRIS, Tohoku University
-
Xue Jia
AIMR, Tohoku University
-
Hao Li
AIMR, Tohoku University
-
Takaaki Tomai
FRIS, Tohoku University
-
-
Real-time Autonomous Optimization of Thin Film Growth
ORAL
–
Publication: 1] Xu. X, Wang. W. Multiferroic hexagonal ferrites (h-RFeO3, R = Y, Dy-Lu): a brief experimental review.<br>Mod. Phys. Lett. B. 28 (21) (2014).<br>[2] H. Yokota, T. Nozue, S. Nakamura, M. Fukunaga, and A. Fuwa, Examination of Ferroelectric and<br>Magnetic Properties of Hexagonal ErFeO3 Thin Films, Jpn. J. Appl. Phys. 54, 10NA10 (2015).<br>[3] K. K. Sinha, Growth and Characterization of Hexagonal Rare-Earth Ferrites (h-RFeO3; R = Sc, Lu, Yb),<br>The University of Nebraska - Lincoln PP - United States -- Nebraska, 2018.<br>[4] J. Kasahara, T. Katayama, S. Mo, A. Chikamatsu, Y. Hamasaki, S. Yasui, M. Itoh, and T. Hasegawa,<br>Room-Temperature Antiferroelectricity in Multiferroic Hexagonal Rare-Earth Ferrites, ACS Appl. Mater.<br>Interfaces 13, 4230 (2021).<br>[5] J. M. Costantini, T. Ogawa, A. S. I. Bhuian, and K. Yasuda, Cathodoluminescence Induced in Oxides by<br>High-Energy Electrons: Effects of Beam Flux, Electron Energy, and Temperature, J. Lumin. 208, 108<br>(2019).<br>[6] Liang. H. et al. Application of machine learning to reflection high-energy electron diffraction images<br>for automated structural phase mapping. Phys. Rev. Materials. 6, 063805 (2022).<br>[7] Wang. A. et al. Benchmarking active learning strategies for materials optimization and discovery.<br>Oxford Open Materials Science, 2 (1) (2022).<br>[8] Kusne. A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat.<br>Commun. 2020 111 11, 1–11 (2020).
Presenters
-
Haotong Liang
University of Maryland College Park
Authors
-
Haotong Liang
University of Maryland College Park
-
Ryan S Paxson
University of Maryland, University of Maryland, College Park
-
Yunlong Sun
The University of Tokyo
-
Aaron Kusne
University of Maryland College Park
-
Mikk Lippmaa
The University of Tokyo
-
Ichiro Takeuchi
University of Maryland College Park, University of Maryland, University of Maryland, College Park
-
-
A structure-informed machine learning approach for understanding superconductivity
ORAL
–
Presenters
-
YANJUN LIU
Cornell University
Authors
-
YANJUN LIU
Cornell University
-
Krishnanand M Mallayya
Cornell University
-
Omri Lesser
Cornell University
-
Natalie Maus
University of Pennsylvania
-
Jacob R Gardner
University of Pennsylvania
-
Alexander Terenin
Cornell University
-
Eun-Ah Kim
Cornell University
-
-
Machine learning guided study of BCS superconductors
ORAL
–
Presenters
-
Trevor David Rhone
Rensselaer Polytechnic Institute
Authors
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
Dylan Sheils
Rensselaer Polytechnic Institute
-
Yoshiharu Krockenberger
NTT Basic Research Labs
-
-
Optimizing Feature Space for Small or Lower-Quality Data: A Case-Study in Charge Carrier Mobility
ORAL
–
Presenters
-
Thomas A R Purcell
University of Arizona
Authors
-
Thomas A R Purcell
University of Arizona
-
Yi Yao
The NOMAD Laboratory at the FHI of the MPS and MS1P e.V. Berlin
-
Raushan Anjum
University of Arizona
-
Matthias Scheffler
The NOMAD Laboratory at FHI, Max Planck Society
-