Predicting first-principles Hubbard parameters with equivariant deep learning
ORAL
Abstract
Density-functional theory (DFT) extended with Hubbard corrections (DFT+U+V) [1] has shown many successes in predicting the properties of materials containing localized d or f electrons [2], where standard semi-local DFT functionals fail largely due to large self-interaction errors. However, its predictive power relies on having the correct on-site U and inter-site V Hubbard parameters, which should be computed consistently fully from first principles [3]. We have shown that equivariant models using electronic-structure features can predict these Hubbard parameters as obtained from density-functional perturbation theory (DFPT) with almost no loss of accuracy in derived properties at a 100-fold reduction in computational costs [4]. Here, we present an extended approach which leverages both atomic-structure and electronic-structure descriptors for superior generalizability, bringing high-throughput materials design and discovery with first-principles Hubbard functionals within reach.
[1] V. L. Campo and M. Coccocioni, J. Phys. Cond. Matter 22.5, 055602 (2010)
[2] I. Timrov et al., PRX Energy 1, 033003 (2022)
[3] I. Timrov, N. Marzari, and M. Coccocioni, Phys. Rev. B 98, 086127 (2018)
[4] M. Uhrin et al., arXiV:2406.02457 (2024)
[1] V. L. Campo and M. Coccocioni, J. Phys. Cond. Matter 22.5, 055602 (2010)
[2] I. Timrov et al., PRX Energy 1, 033003 (2022)
[3] I. Timrov, N. Marzari, and M. Coccocioni, Phys. Rev. B 98, 086127 (2018)
[4] M. Uhrin et al., arXiV:2406.02457 (2024)
–
Publication: M. Uhrin et al., arXiV:2406.02457 (2024)<br>A. Zadoks et al, planned
Presenters
-
Austin Zadoks
Ecole Polytechnique Federale de Lausanne
Authors
-
Austin Zadoks
Ecole Polytechnique Federale de Lausanne
-
Martin Uhrin
Universite Grenoble Alpes
-
Luca Binci
University of California, Berkeley, Lawrence Berkeley National Laboratory
-
Lorenzo Bastonero
University of Bremen
-
Cristiano Malica
University of Bremen
-
Iurii Timrov
Paul Scherrer Institut, Paul Scherrer Institute
-
Nicola Marzari
Ecole Polytechnique Federale de Lausanne, École Polytechnique Fédérale de Lausanne (EPFL), Ecole Polytechnique Federale de Lausanne (EPFL), Paul Scherrer Institut (PSI)