Machine Learning for Atomistic Simulation II: Electronic Structure and Long-Range Charge Interactions
FOCUS · MAR-C50 · ID: 3104614
Presentations
-
Deep learning density functional theory and beyond
ORAL · Invited
–
Publication: [1] H. Li, et al. Nature Computational Science 2, 367 (2022) arXiv: 2104.03786<br>[2] X. Gong, et al. Nature Communications 14, 2848 (2023)<br>[3] H. Li, et al. Nature Computational Science 3, 321 (2023)<br>[4] H. Li, et al. Physical Review Letters 132, 096401 (2024)<br>[5] Y. Li, et al. Physical Review Letters 133, 076401 (2024)<br>[6] Z. Tang, et al. Nature Communications 15, 8815 (2024)<br>[7] X. Gong, et al. Nature Computational Science 4, 752 (2024)<br>[8] Z Yuan, et al. Quantum Frontiers 3, 8 (2024)<br>[9] Y Wang, et al. Science Bulletin 69, 2514 (2024)<br>[10] Y Wang, et al. arXiv:2401.17015<br>[11] H. Li, et al. Materials Genome Engineering Advances e16 (2023)<br>[12] H. Li, et al. Physics, 53, 442 (2024)
Presenters
-
Yong Xu
Tsinghua University
Authors
-
Yong Xu
Tsinghua University
-
-
Developing Accurate Exchange-Correlation Functionals through Physics-Informed Machine Learning
ORAL
–
Presenters
-
Joshua Franklin
Arizona State University
Authors
-
Joshua Franklin
Arizona State University
-
Marivi Fernandez-Serra
Stony Brook University
-
Alec Wills
Stony Brook University (SUNY)
-
Sara Navarro-Rodriguez
ICN2
-
-
Machine-Learned Exchange-Correlation Functionals: The CiderPress Code Package
ORAL
–
Presenters
-
Kyle Bystrom
Flatiron Institute
Authors
-
Kyle Bystrom
Flatiron Institute
-
Zhuotao Jin
Harvard University
-
Mohamed Abdallah
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Teaching oxidation states to neural networks
ORAL
–
Presenters
-
Cristiano Malica
University of Bremen
Authors
-
Cristiano Malica
University of Bremen
-
Nicola Marzari
Ecole Polytechnique Federale de Lausanne, École Polytechnique Fédérale de Lausanne (EPFL), Ecole Polytechnique Federale de Lausanne (EPFL), Paul Scherrer Institut (PSI)
-
-
Predicting first-principles Hubbard parameters with equivariant deep learning
ORAL
–
Publication: M. Uhrin et al., arXiV:2406.02457 (2024)<br>A. Zadoks et al, planned
Presenters
-
Austin Zadoks
Ecole Polytechnique Federale de Lausanne
Authors
-
Austin Zadoks
Ecole Polytechnique Federale de Lausanne
-
Martin Uhrin
Universite Grenoble Alpes
-
Luca Binci
University of California, Berkeley, Lawrence Berkeley National Laboratory
-
Lorenzo Bastonero
University of Bremen
-
Cristiano Malica
University of Bremen
-
Iurii Timrov
Paul Scherrer Institut, Paul Scherrer Institute
-
Nicola Marzari
Ecole Polytechnique Federale de Lausanne, École Polytechnique Fédérale de Lausanne (EPFL), Ecole Polytechnique Federale de Lausanne (EPFL), Paul Scherrer Institut (PSI)
-
-
Unsupervised Learning of Individual Kohn-Sham States: Interpretable Representations and Consequences for Downstream Predictions of Many-Body Effects
ORAL
–
Publication: [1] B. Hou, et al, "Unsupervised Learning of Individual Kohn-Sham States: Interpretable Representations and Consequences for Downstream Predictions of Many-Body Effects" arXiv, 2404.14601, 2024 (https://arxiv.org/abs/2404.14601)<br>[2] B. Hou, et al, "Unsupervised Representation Learning of Kohn-Sham States and Consequences for Downstream Predictions of Many-Body Effects", Nature Communications (accepted) 2024: <br>
Presenters
-
Bowen Hou
Yale University
Authors
-
Bowen Hou
Yale University
-
Jinyuan Wu
Yale University
-
Diana Y Qiu
Yale University
-
-
Machine Learning Framework for Predicting Strain-Induced Electronic and Optoelectronic Properties of Heterostructure TMDCs
ORAL
–
Presenters
-
Arnab Neogi
Los Alamos National Laboratory
Authors
-
Arnab Neogi
Los Alamos National Laboratory
-
Christopher A Lane
Los Alamos National Lab, Los Alamos National Laboratory, Los Alamos National Laboratory (LANL)
-
Sergei Tretiak
Los Alamos National Laboratory (LANL)
-
Jian-Xin Zhu
Los Alamos National Laboratory (LANL), Los Alamos National Laboratory
-
-
Computation Aid for Moire Material Electronic Structure Using Targeted Trained Graph Neural Networks
ORAL
–
Publication: Planned paper: Moire Material Electronic Structure Study Aid With Targeted Trained Graph Neural Networks
Presenters
-
Jonas Valenzuela Teran
Department of Physics & Astronomy, Texas A&M University
Authors
-
Jonas Valenzuela Teran
Department of Physics & Astronomy, Texas A&M University
-
Bin Yang
Department of Physics & Astronomy, Texas A&M University
-
Winfried Teizer
Department of Physics & Astronomy and Department of Materials Science and Engineering, Texas A&M University
-
-
Radical AI — Accelerating Materials R&D
ORAL
–
Publication: S. Falletta, A. Cepellotti, A. Johansson, C. W. Tan, A. Musaelian, C. J. Owen, B. Kozinsky, arXiv:2403.17207 (2024)
Presenters
-
Stefano Falletta
Harvard University, Harvard
Authors
-
Stefano Falletta
Harvard University, Harvard
-
Andrea Cepellotti
Harvard University
-
Andres Johansson
Harvard University
-
Chuin Wei Tan
Harvard University
-
Marc L Descoteaux
Harvard University
-
Albert Musaelian
Harvard University
-
Cameron John Owen
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Efficiently capturing long-range interactions for machine learned interatomic potentials
ORAL
–
Presenters
-
Jay L Kaplan
New York University
Authors
-
Jay L Kaplan
New York University
-
Juan J De Pablo
University of Chicago
-
-
Long-Range Equivariant Machine Learning Interatomic Potentials for Simulating Charge Transfer.
ORAL
–
Presenters
-
Moin Uddin Maruf
Texas Tech University
Authors
-
Moin Uddin Maruf
Texas Tech University
-
Zeeshan Ahmad
Texas Tech University
-
-
Machine learning small polaron dynamics
ORAL
–
Publication: Birschitzky, V. C., Leoni, L., Reticcioli, M. & Franchini, C. Machine Learning Small Polaron Dynamics 2024. arXiv: 2409.16179 [cond-mat.mtrl-sci]. https://arxiv.org/abs/2409.16179
Presenters
-
Luca Leoni
University of Bologna
Authors
-
Luca Leoni
University of Bologna
-
Viktor C Birschitzky
University of Vienna
-
Michele Reticcioli
University of Vienna
-
Cesare Franchini
University of Vienna
-