Computer vision and statistical ML to analyze PBX microstructure, initiation threshold, and self-similarity in explosive hotspots
ORAL
Abstract
–
Publication: 1. "Topological analysis of X-ray CT data for the recognition and trending of subtle changes in microstructure under material aging," A. Maiti, A. Venkat, G. D. Kosiba, W. L. Shaw, J. D. Sain, R. K. Lindsey, C. D. Grant, P.-T. Bremer, A. G. Gyulassi, V. Pascucci, and R. H. Gee, Comput. Mat. Sci. 182, 109782 (2020).<br>2. "Effect of thermal conditioning on the initiation threshold of secondary high explosives," A. Maiti, W. L. Shaw, S. M. Clarke, C. Fox, L. A. Ke, W. N. Cheung, M. A. Burton, G. D. Kosiba, C. D. Grant, R. H. Gee, Propell. Explos. Pyrot. 49(2), e202300253 (2024).<br>3. "Image Distinguishability Analysis Testing through Principal Components and its Application to Hot Spot Scale Invariance," M. P. Kroonblawd, A. Maiti, and L. E. Fried, to be submitted (2025).<br>4. "Classifying material microstructure of accelerated aged high explosives with a computer vision approach," G. D. Kosiba, A. Maiti, R. K. Lindsey, W. L Shaw, C. D. Grant, and R. H. Gee, to be submitted (2025).
Presenters
-
Amitesh Maiti
Lawrence Livermore National Laboratory
Authors
-
Amitesh Maiti
Lawrence Livermore National Laboratory
-
Graham D Kosiba
Lawrence Livermore National Laboratory
-
Matthew P Kroonblawd
Lawrence Livermore National Laboratory
-
Richard H Gee
Lawrence Livermore National Lab