DATA: Machine Learning for High Dimentional Data: Microstructure, Images, and Fields
FOCUS · C07 · ID: 3364052
Presentations
-
Learning Shock Hydrodynamics with Generative Models
ORAL · Invited
–
Publication: Jekel, C. F., Sterbentz, D. M., Stitt, T. M., Mocz, P., Rieben, R. N., White, D. A., & Belof, J. L. (2024). Machine learning visualization tool for exploring parameterized hydrodynamics. Machine Learning: Science and Technology, 5(4), 045048.
Presenters
-
Charles F Jekel
Lawrence Livermore National Laboratory
Authors
-
Charles F Jekel
Lawrence Livermore National Laboratory
-
-
Interpreting Dynamic Compression Experiments using Machine Learning
ORAL
–
Presenters
-
David Oca Montes de Oca Zapiain
Sandia National Laboratories
Authors
-
David Oca Montes de Oca Zapiain
Sandia National Laboratories
-
Samantha Brozak
Sandia National Laboratories
-
Brendan Donohoe
Sandia National Laboratories
-
Tommy Ao
Sandia National Laboratories
-
Mark Rodriguez
Sandia National Laboratories
-
Marcus David Knudson
Sandia National Laboratories
-
Nathan P Brown
Sandia National Laboratories
-
J. Matthew D Lane
Sandia National Laboratories
-
-
Physics-Aware Convolutional Neural Networks for Modelling Energetic Material in the Weak Shock Regime
ORAL
–
Publication: 1. P. C. Nguyen, et al., PARCv2: Physics-aware Recurrent Convolutional Neural Networks for Spatiotemporal Dynamics Modeling, in Forty-first International Conference on Machine Learning (2024)<br>2. X. Cheng, et al., Physics-aware recurrent convolutional neural networks for modeling multiphase compressible flows. International Journal of Multiphase Flow p. 104877 (2024)<br>3. X. Cheng et al., A Physics-aware Deep Learning Model for Energetic Material Shear Band Formation in Weak Shock Regime, in preparation
Presenters
-
Xinlun Cheng
University of Virginia
Authors
-
Xinlun Cheng
University of Virginia
-
Yen t Nguyen
University of Iowa
-
Joseph Choi
University of Virginia
-
Pradeep Kumar Seshadri
University of Iowa
-
Mayank Verma
University of Iowa
-
H.S. Udaykumar
University of Iowa
-
Stephen Baek
University of Virginia
-
-
Heterogeneous energetic damage simulator (HEDS): Deep Learning for Synthetic PBX Microstructures with Controlled Damage and Porosity
ORAL
–
Presenters
-
Irene Fang
University of Iowa
Authors
-
Irene Fang
University of Iowa
-
Shobhan Roy
University of Iowa
-
Stephen Baek
University of Virginia
-
H.S. Udaykumar
University of Iowa
-
-
Computer vision and statistical ML to analyze PBX microstructure, initiation threshold, and self-similarity in explosive hotspots
ORAL
–
Publication: 1. "Topological analysis of X-ray CT data for the recognition and trending of subtle changes in microstructure under material aging," A. Maiti, A. Venkat, G. D. Kosiba, W. L. Shaw, J. D. Sain, R. K. Lindsey, C. D. Grant, P.-T. Bremer, A. G. Gyulassi, V. Pascucci, and R. H. Gee, Comput. Mat. Sci. 182, 109782 (2020).<br>2. "Effect of thermal conditioning on the initiation threshold of secondary high explosives," A. Maiti, W. L. Shaw, S. M. Clarke, C. Fox, L. A. Ke, W. N. Cheung, M. A. Burton, G. D. Kosiba, C. D. Grant, R. H. Gee, Propell. Explos. Pyrot. 49(2), e202300253 (2024).<br>3. "Image Distinguishability Analysis Testing through Principal Components and its Application to Hot Spot Scale Invariance," M. P. Kroonblawd, A. Maiti, and L. E. Fried, to be submitted (2025).<br>4. "Classifying material microstructure of accelerated aged high explosives with a computer vision approach," G. D. Kosiba, A. Maiti, R. K. Lindsey, W. L Shaw, C. D. Grant, and R. H. Gee, to be submitted (2025).
Presenters
-
Amitesh Maiti
Lawrence Livermore National Laboratory
Authors
-
Amitesh Maiti
Lawrence Livermore National Laboratory
-
Graham D Kosiba
Lawrence Livermore National Laboratory
-
Matthew P Kroonblawd
Lawrence Livermore National Laboratory
-
Richard H Gee
Lawrence Livermore National Lab
-