APS Logo

Stochastic dynamics and ribosome-RNAP interactions in Transcription-Translation Coupling

ORAL

Abstract

Under certain cellular conditions, transcription and mRNA translation in prokaryotes appear to be "coupled," in which the formation of mRNA transcript and production of its associated protein are temporally correlated. Such transcription-translation coupling (TTC) has been evoked as a mechanism that speeds up the overall process, provides protection against premature termination, and/or regulates the timing of transcript and protein formation. What molecular mechanisms underlie ribosome-RNAP coupling and how they can perform

these functions have not been explicitly modeled. We develop and analyze a continuous-time stochastic model that incorporates ribosome and RNAP elongation rates, initiation and termination rates, RNAP pausing, and direct ribosome and RNAP interactions (exclusion and binding). Our model predicts how distributions of delay times depend on these molecular features. We also propose additional measures for TTC: a direct ribosome-RNAP binding probability and the fraction of time the translation-transcription process is protected from attack by transcription-terminating proteins. These metrics quantify different aspects of TTC and depend on parameters of known molecular processes. We use our metrics to reveal how and when our model can exhibit either acceleration or deceleration of transcription, as well as protection from termination. Our detailed

mechanistic model provides a basis for new experimental assays that can better elucidate TTC.

Publication: Li and Chou, Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling, Biophysical Journal (2022), https://doi.org/10.1016/j.bpj.2022.09.041

Presenters

  • Xiangting Li

    University of California, Los Angeles

Authors

  • Xiangting Li

    University of California, Los Angeles

  • Tom Chou

    University of California, Los Angeles