APS Logo

Uniform and controlled Si doping of Ga<sub>2</sub>O<sub>3 </sub>by disilane via hybrid molecular beam epitaxy

ORAL

Abstract

β-Ga2O3 has attracted a great deal of interest in recent years due to its ultra-wide bandgap (Eg = 4.7eV) and the availability of large-scale substrates. n-type doping of Ga2O3 has been achieved using Sn, Si, and Ge by metal-organic chemical vapor deposition (MOCVD), pulsed laser deposition (PLD), and molecular beam epitaxy (MBE). Regardless, in conventional MBE systems, achieving Si-doped Ga2O3 films with wide-ranging doping concentrations and uniform doping profiles has been challenging due to the oxidation of solid Si source in the oxygen-rich environment. Recently, J. P. McCandless et al. reached to low 1017 cm-3 Si doping concentration by inserting an endplate into the Si crucible.





In this work, we propose using diluted disilane (Si2H6/N2) in a hybrid MBE to obtain Si-doped Ga2O3. In this approach, instead of using traditional solid Si as the precursor, a gas source of Si, disilane (Si2H6), is introduced to avoid the oxidation of Si during the growth. By using diluted disilane, we have achieved a wide range of Si doping concentrations from low 1016 cm-3 to 1019 cm-3 with a uniform doping profile. The room temperature electron mobility was measured to be ~130 cm2/Vs for an electron concentration of 3 × 1017 cm-3. Atomic force microscopy (AFM) images show smooth surface morphologies. Silicon and Hydrogen incorporation was measured using secondary ion mass spectrometry (SIMS). The hydrogen incorporation remained similar to that in unintentionally doped films. This is the first time that disilane has been successfully used for the Si-doping of Ga2O3 by MBE.

Publication: 1. F. Alema, Y. Zhang, A. Osinsky, N. Valente, A. Mauze, T. Itoh, and J. S. Speck, "Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown b-Ga2O3," APL Mater. 7, 121110 (2019).<br>2. Z. Feng, A. F. Anhar Uddin Bhuiyan, M. R. Karim, and H. Zhao, "MOCVD homoepitaxy of Si-doped (010) b-Ga2O3 thin films with superior transport properties," Appl. Phys. Lett. 114, 250601 (2019).<br>3. Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, "MOCVD grown epitaxial b-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature," APL Mater. 7, 022506 (2019).<br>4. S. Rafique, M. R. Karim, J. M. Johnson, J. Hwang, and H. Zhao, "LPCVD homoepitaxy of Si doped b-Ga2O3 thin films on (010) and (001) substrates," Appl. Phys. Lett. 112, 052104 (2018).<br>5. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, and G. Wagner, "Semiconducting Sn-doped b-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy," J. Mater. Sci. 51, 3650–3656 (2016).<br>6. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, "Si- and Sn-doped homoepitaxial b-Ga2O3 layers grown by MOVPE on (010)- oriented substrates," ECS J. Solid State Sci. Technol. 6, Q3040 (2017).<br>7. K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, "Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) b-Ga2O3 by pulsed laser deposition," Appl. Phys. Lett. 111, 012103 (2017).<br>8. N. K. Kalarickal, Z. Xia, J. McGlone, S. Krishnamoorthy, W. Moore, M. Brenner, A. R. Arehart, S. A. Ringel, and S. Rajan, "Mechanism of Si doping in plasma assisted MBE growth of b-Ga2O3," Appl. Phys. Lett. 115, 152106 (2019).<br>9. E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, "Ge doping of b-Ga2O3 films grown by plasma-assisted molec- ular beam epitaxy," Appl. Phys. Express 10, 041102 (2017).<br>10. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, "Ge-doped b-Ga2O3 MOSFETs," IEEE Electron Device Lett. 38, 775–778 (2017).<br>11. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, and J. S. Speck, "Systematic investigation of the growth rate of b-Ga2O3 (010) by plasma-assisted molecular beam epitaxy," Appl. Phys. Express 7, 095501 (2014).<br>12. S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, "n-type dopants in (001) b-Ga2O3 grown on (001) b-Ga2O3 substrates by plasma- assisted molecular beam epitaxy," Semicond. Sci. Technol. 33, 045001 (2018).<br>13. A. Mauze, Y. Zhang, T. Itoh, E. Ahmadi, and J. S. Speck, "Sn doping of (010) b-Ga2O3 films grown by plasma-assisted molecular beam epitaxy," Appl. Phys. Lett. 117, 222102 (2020).<br>14. K. Sasaki, A. Kuramata, T. Masui, G. Villora, K. Shimamura, and S. Yamakoshi, "Device-quality b-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy," Appl. Phys. Express 5, 035502 (2012).<br>15. P. Vogt, F. V. Hensling, K. Azizie, C. S. Chang, D. Turner, J. Park, J. P. McCandless, H. Paik, B. J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H. G. Xing, S. Mou, D. A. Muller, S. L. Shang, Z. K. Liu, and D. G. Schlom, "Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy," APL Mater. 9, 031101 (2021).<br>16. J. P. McCandless, V. Protasenko, B. W. Morell, E. Steinbrunner, A. T. Neal, N. Tanen, Y. Cho, T.J. Asel, S. Mou, P. Vogt, and H.G. Xing, "Controlled Si doping of ß-Ga2O3 by molecular beam epitaxy." Appl. Phys. Lett. 121, 7, 072108 (2022).

Presenters

  • Zhuoqun Wen

    University of Michigan

Authors

  • Zhuoqun Wen

    University of Michigan

  • Elaheh Ahmadi

    University of Michigan

  • Kamruzzaman Khan

    University of Michigan