Machine Learned Synthesizability Predictions Aided by Density Functional Theory
ORAL
Abstract
–
Publication: Lee, A., Sarker, S., Saal, J.E. et al. Machine learned synthesizability predictions aided by density functional theory. Commun Mater 3, 73 (2022). https://doi.org/10.1038/s43246-022-00295-7
Presenters
-
Andrew Lee
Northwestern University
Authors
-
Andrew Lee
Northwestern University
-
Suchismita Sarker
3. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource
-
James E Saal
Citrine Informatics
-
Logan Ward
Argonne National Laboratory, Data Science and Learning Division, Argonne National Lab
-
Christopher Borg
Citrine Informatics
-
Apurva Mehta
3. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource
-
Christopher M Wolverton
Northwestern University