AI and Materials I
ORAL · A53 · ID: 1067000
Presentations
-
Screening the unexplored crystal prototype space and inverting XRD patterns with the WREN machine-learning model
ORAL
–
Publication: Rapid discovery of stable materials by coordinate-free coarse graining, R. E. A. Goodall, A. S. Parackal, F. A. Faber, R. Armiento, and A. A. Lee, Science Advances 8, eabn4117 (2022) https://doi.org/10.1126/sciadv.abn4117.
Presenters
-
Rickard Armiento
Linköping University
Authors
-
Rickard Armiento
Linköping University
-
Abhijith S Parackal
Linköping University
-
Rhys Goodall
University of Cambridge
-
Felix A Faber
University of Cambridge
-
Alpha A Lee
University of Cambridge
-
-
Semi and Self Supervised approaches to Space Group and Bravais Lattice Determination
ORAL
–
Publication: "A semi-supervised deep-learning approach for automatic crystal structure classification"<br>Satvik Lolla Et al, Journal of Applied Crystallography 55 (2022)<br>https://doi.org/10.1107/S1600576722006069
Presenters
-
William Ratcliff
National Institute of Standards and Technology, National Institute of Standards and Technology; University of Maryland
Authors
-
William Ratcliff
National Institute of Standards and Technology, National Institute of Standards and Technology; University of Maryland
-
Satvik S Lolla
State of Maryland
-
Ichiro Takeuchi
University of Maryland, College Park, 1. Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
-
Aaron Kusne
National Institute of Standards and Technology
-
Haotong Liang
University of Maryland, College Park
-
-
Machine Learning the Electronic Structure of Phase Change Materials
ORAL
–
Presenters
-
Qunfei Zhou
Northwestern University
Authors
-
Qunfei Zhou
Northwestern University
-
Suvo Banik
University of Illinois Chicago
-
Srilok Srinivasan
Argonne National Laboratory
-
Subramanian K Sankaranarayanan
University of Illinois, Argonne National, University of Illinois Chicago, Argonne National Laboratory
-
Pierre Darancet
Argonne National Laboratory
-
-
Data-driven studies of topological magnetic vdW materials
ORAL
–
Presenters
-
Romakanta Bhattarai
Rensselaer Polytechnic Institute
Authors
-
Romakanta Bhattarai
Rensselaer Polytechnic Institute
-
Peter Minch
Rensselaer Polytechnic Institute
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
-
Data-driven Study of Magnetic Anisotropy in Transition Metal Dichalcogenide Monolayers
ORAL
–
Presenters
-
Peter Minch
Rensselaer Polytechnic Institute
Authors
-
Peter Minch
Rensselaer Polytechnic Institute
-
Romakanta Bhattarai
Rensselaer Polytechnic Institute
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
-
Using chemical-formula-based generalizable models to expand the search space for viable interconnect materials
ORAL
–
Publication: A. Ramdas, E. Antoniuk and E. J. Reed, "A Multi-Objective Approach for Rapid Identification of Post-Cu Interconnect Candidates," 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2022, pp. 1-2, doi: 10.1109/VLSI-TSA54299.2022.9770966.
Presenters
-
Akash Ramdas
Stanford University
Authors
-
Akash Ramdas
Stanford University
-
Evan J Reed
Stanford Rsch Lab
-
Felipe H da Jornada
Stanford University, Stanford
-
-
How to Search for Stable Inorganic Compounds More Efficiently
ORAL
–
Presenters
-
Sean D Griesemer
Northwestern University
Authors
-
Sean D Griesemer
Northwestern University
-
Ruijie Zhu
Northwestern University
-
Koushik Pal
Northwestern University
-
Cheol Park
Northwestern University
-
Logan Ward
Argonne National Laboratory, Data Science and Learning Division, Argonne National Lab
-
Christopher M Wolverton
Northwestern University
-
-
Integrating Machine Learning with Mechanistic Models for Predicting the Yield Strength of High Entropy Alloys
ORAL
–
Publication: Shunshun Liu, Kyungtae Lee, and Prasanna V. Balachandran, "Integrating machine learning with mechanistic models for predicting the yield strength of high entropy alloys", Journal of Applied Physics 132, 105105 (2022) https://doi.org/10.1063/5.0106124
Presenters
-
Shunshun Liu
University of Virginia
Authors
-
Shunshun Liu
University of Virginia
-
Kyungtae Lee
University of Virginia
-
Prasanna V Balachandran
University of Virginia
-
-
Statistics on the magnetism of cobalt compounds: A database approach to discovering new Co-based ferromagnets
ORAL
–
Publication: Journey K. Byland, Yunshu Shi, David S. Parker, Jingtai Zhao, Shaoqing Ding, Rogelio Mata, Haley E. Magliari, Andriy Palasyuk, Sergey L. Bud'ko, Paul C. Canfield, Peter Klavins, and Valentin Taufour, Phys. Rev. Materials 6, 063803 (2022)
Presenters
-
Journey K Byland
University of California, Davis
Authors
-
Journey K Byland
University of California, Davis
-
Yunshu Shi
University of California, Davis
-
David S Parker
Oak Ridge National Laboratory
-
Journey K Byland
University of California, Davis
-
Shaoqing Ding
Pennsylvania State University
-
Rogelio Mata
University of California, Davis
-
Haley E Magliari
University of California, Davis
-
Andriy Palasyuk
Ames Laboratory
-
Sergey L Bud'ko
Iowa State University, Ames National Laboratory, Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames Laboratory
-
Paul C Canfield
Iowa State University, Ames National Laboratory, Ames National Laboratory/Iowa State University
-
Peter Klavins
University of California, Davis
-
Valentin Taufour
Department of Physics, University of California, Davis, University of California, Davis
-
-
Navigating materials design space with variational autoencoders to learn materials thermodynamics
ORAL
–
Presenters
-
Vahe Gharakhanyan
Columbia University
Authors
-
Vahe Gharakhanyan
Columbia University
-
Dallas R Trinkle
University of Illinois Urbana-Champaign
-
Snigdhansu Chatterjee
University of Minnesota
-
Alexander Urban
Columbia University
-
-
Automatic, physical data extraction from scientific publications for application to generative molecular design in computational materials discovery
ORAL
–
Presenters
-
Ronaldo Giro
IBM Research - Brazil
Authors
-
Ronaldo Giro
IBM Research - Brazil
-
Mohab Elkaref
IBM Research - UK
-
Hsianghan Hsu
IBM Research - Tokyo
-
Nathan Herr
IBM Research - UK
-
Geeth de Mel
IBM Research - UK
-
Mathias B Steiner
IBM Research - Brazil
-
-
Machine Learned Synthesizability Predictions Aided by Density Functional Theory
ORAL
–
Publication: Lee, A., Sarker, S., Saal, J.E. et al. Machine learned synthesizability predictions aided by density functional theory. Commun Mater 3, 73 (2022). https://doi.org/10.1038/s43246-022-00295-7
Presenters
-
Andrew Lee
Northwestern University
Authors
-
Andrew Lee
Northwestern University
-
Suchismita Sarker
3. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource
-
James E Saal
Citrine Informatics
-
Logan Ward
Argonne National Laboratory, Data Science and Learning Division, Argonne National Lab
-
Christopher Borg
Citrine Informatics
-
Apurva Mehta
3. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource
-
Christopher M Wolverton
Northwestern University
-
-
Hypothesis-driven active learning over the chemical space
ORAL
–
Presenters
-
Ayana Ghosh
Oak Ridge National Lab
Authors
-
Ayana Ghosh
Oak Ridge National Lab
-
Sergei V Kalinin
University of Tennessee, University of Tennessee, Knoxville
-
Maxim Ziatdinov
Oak Ridge National Lab
-
-
Artificial intelligence guided materials discovery of van der Waals magnets
ORAL
–
Publication: [1] T. D. Rhone, et al., Sci Rep 10, 15795 (2020). <br>[2] Y. Xie, et al., J. Phys. Chem. Lett., 12, 50, 12048–12054 (2021).
Presenters
-
Trevor David Rhone
Rensselaer Polytechnic Institute
Authors
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
Bethany A Lusch
Argonne National Laboratory
-
Misha Salim
Argonne National Laboratory
-
Haralambos Gavras
Rensselaer Polytechnic Institute
-
Vaishnavi Neema
Rensselaer Polytechnic Institute
-
Daniel T Larson
Harvard University, Department of Physics, Harvard University
-
Efthimios Kaxiras
Harvard University
-