Machine Learning for tuning, controlling, and optimizing semiconductor spin qubits
ORAL · Invited
Abstract
In the first course tuning step, our machine-learning algorithms find and energize hole and electron quantum dots faster than human experts. Then, supported by a physical model, another algorithm searches a large dimensional parameter space for signatures of spin effects necessary to operate and read out spin qubit systems. Finally, we report on automated quality optimization of an all-electrical hole spin qubit by changing relevant system parameters such as magnetic and electric fields, read-out position, driving strength, and qubit energy.
We believe that such AI-based procedures will be crucial for controlling more extensive and complex spin qubit networks required in a quantum processor.
–
Publication: 1. Identifying Pauli spin blockade using deep learning.<br>J. Schuff, D.T. Lennon, S. Geyer, D. Craig, F. Fedele, F. Vigneau, L.C. Camenzind, A.V. Kuhlmann, R.J. Warburton, D.M. Zumbühl, D. Sejdinovic, G.A.D. Briggs, N. Ares. Planned Paper (2021).<br>2. Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning.<br>B. Severin, D. T. Lennon, L. C. Camenzind, F. Vigneau, F. Fedele, D. Jirovec, A. Ballabio, D. Chrastina, G. Isella, M. de Kruijf, M. J. Carballido, S. Svab, A. V. Kuhlmann, F. R. Braakman, S. Geyer, F. N. M. Froning, H. Moon, M. A. Osborne, D. Sejdinovic, G. Katsaros, D. M. Zumbühl, G. A. D. Briggs, and N. Ares. Preprint, arXiv:2107.12975 (2021).<br>3. Deep Reinforcement Learning for Efficient Measurement of Quantum Devices.<br>V. Nguyen*, S. B. Orbell*, D.T. Lennon, H. Moon, F. Vigneau, L.C. Camenzind, L. Yu, D.M. Zumbühl, <br>G.A.D. Briggs, M. A. Osborne, D. Sejdinovic, and N. Ares. npj Quantum Information 7, 100 (2021).<br>4. Quantum device fine-tuning using unsupervised embedding learning.<br>N.M. van Esbroeck, D.T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L.C. Camenzind, L. Yu, <br>D.M. Zumbühl, G.A.D. Briggs, D. Sejdinovic, and N. Ares. New J. Phys. 22 09503 (2020) <br>5. Machine learning enables completely automatic tuning of a quantum device faster than human experts.<br>H. Moon*, D.T. Lennon*, J. Kirkpatrick, N.M. van Esbroeck, L.C. Camenzind, Liuqi Yu, F. Vigneau, D.M. Zumbühl, G.A.D. Briggs, M.A Osborne, D. Sejdinovic, E.A. Laird, N. Ares. Nature Communications 11, 4161 (2020)<br>6. Efficiently measuring a quantum device using machine learning.<br>D. T. Lennon, H. Moon, L. C. Camenzind, Liuqi Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, E. A. Laird, N. Ares. npj Quantum Information 5, 79 (2019)
Presenters
-
Dominic T Lennon
University of Oxford
Authors
-
Leon Camenzind
University of Basel
-
Dominic T Lennon
University of Oxford
-
Vu Nguyen
University of Oxford
-
Brandon Severin
University of Oxford
-
Nina M van Esbroeck
University of Oxford
-
James Kirkpatrick
DeepMind, London, UK
-
Sebastian Orbell
University of Oxford
-
Hyungil Moon
University of Oxford
-
Jonas Schuff
University of Oxford
-
Florian Vigneau
University of Oxford
-
Liuqi Yu
University of Maryland, College Park, University of Basel
-
Simon Geyer
University of Basel
-
Andreas V Kuhlmann
University of Basel
-
Florian N Froning
University of Basel
-
Dino Sejdinovic
University of Oxford
-
Michael A Osborne
University of Oxford
-
Edward A Laird
Lancaster University
-
G. Andrew D Briggs
University of Oxford
-
Dominik M Zumbuhl
University of Basel
-
Natalia Ares
University of Oxford