Data Science, Artificial Intelligence and Machine Learning
FOCUS · Q43 · ID: 48672
Presentations
-
Machine Learning for tuning, controlling, and optimizing semiconductor spin qubits
ORAL · Invited
–
Publication: 1. Identifying Pauli spin blockade using deep learning.<br>J. Schuff, D.T. Lennon, S. Geyer, D. Craig, F. Fedele, F. Vigneau, L.C. Camenzind, A.V. Kuhlmann, R.J. Warburton, D.M. Zumbühl, D. Sejdinovic, G.A.D. Briggs, N. Ares. Planned Paper (2021).<br>2. Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning.<br>B. Severin, D. T. Lennon, L. C. Camenzind, F. Vigneau, F. Fedele, D. Jirovec, A. Ballabio, D. Chrastina, G. Isella, M. de Kruijf, M. J. Carballido, S. Svab, A. V. Kuhlmann, F. R. Braakman, S. Geyer, F. N. M. Froning, H. Moon, M. A. Osborne, D. Sejdinovic, G. Katsaros, D. M. Zumbühl, G. A. D. Briggs, and N. Ares. Preprint, arXiv:2107.12975 (2021).<br>3. Deep Reinforcement Learning for Efficient Measurement of Quantum Devices.<br>V. Nguyen*, S. B. Orbell*, D.T. Lennon, H. Moon, F. Vigneau, L.C. Camenzind, L. Yu, D.M. Zumbühl, <br>G.A.D. Briggs, M. A. Osborne, D. Sejdinovic, and N. Ares. npj Quantum Information 7, 100 (2021).<br>4. Quantum device fine-tuning using unsupervised embedding learning.<br>N.M. van Esbroeck, D.T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L.C. Camenzind, L. Yu, <br>D.M. Zumbühl, G.A.D. Briggs, D. Sejdinovic, and N. Ares. New J. Phys. 22 09503 (2020) <br>5. Machine learning enables completely automatic tuning of a quantum device faster than human experts.<br>H. Moon*, D.T. Lennon*, J. Kirkpatrick, N.M. van Esbroeck, L.C. Camenzind, Liuqi Yu, F. Vigneau, D.M. Zumbühl, G.A.D. Briggs, M.A Osborne, D. Sejdinovic, E.A. Laird, N. Ares. Nature Communications 11, 4161 (2020)<br>6. Efficiently measuring a quantum device using machine learning.<br>D. T. Lennon, H. Moon, L. C. Camenzind, Liuqi Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, E. A. Laird, N. Ares. npj Quantum Information 5, 79 (2019)
Presenters
-
Dominic T Lennon
University of Oxford
Authors
-
Leon Camenzind
University of Basel
-
Dominic T Lennon
University of Oxford
-
Vu Nguyen
University of Oxford
-
Brandon Severin
University of Oxford
-
Nina M van Esbroeck
University of Oxford
-
James Kirkpatrick
DeepMind, London, UK
-
Sebastian Orbell
University of Oxford
-
Hyungil Moon
University of Oxford
-
Jonas Schuff
University of Oxford
-
Florian Vigneau
University of Oxford
-
Liuqi Yu
University of Maryland, College Park, University of Basel
-
Simon Geyer
University of Basel
-
Andreas V Kuhlmann
University of Basel
-
Florian N Froning
University of Basel
-
Dino Sejdinovic
University of Oxford
-
Michael A Osborne
University of Oxford
-
Edward A Laird
Lancaster University
-
G. Andrew D Briggs
University of Oxford
-
Dominik M Zumbuhl
University of Basel
-
Natalia Ares
University of Oxford
-
-
Machine learning with the quantum earthmover's distance
ORAL · Invited
–
Presenters
-
Seth Lloyd
Massachusetts Institute of Technology MIT, MIT
Authors
-
Seth Lloyd
Massachusetts Institute of Technology MIT, MIT
-
-
Combining machine learning with first principles to model the Curie temperature of magnetic Heusler compounds
ORAL
–
Presenters
-
Parul R Raghuvanshi
Indian Institute of Technology Bombay
Authors
-
Parul R Raghuvanshi
Indian Institute of Technology Bombay
-
Krishnaraj Kundavu
Indian Institute of Technology, Bombay, Indian Institute of Technology Bombay, IIT Bombay
-
Bhavana Panwar
IIT Bombay
-
Prasun Keshri
IIT Bombay
-
Rohit Pathak
Indian Institute of Technology Bombay
-
Amrita Bhattacharya
Indian Inst of Tech-Bombay
-
-
Denoising scanning tunneling microscopy images with deep learning
ORAL
–
Presenters
-
Frederic F Joucken
Arizona State University
Authors
-
Frederic F Joucken
Arizona State University
-
John L Davenport
University of California, Santa Cruz
-
Zhehao Ge
Department of Physics, University of California, Santa Cruz, University of California, Santa Cruz
-
Eberth Quezada-Lopez
University of California, Santa Cruz
-
Takashi Taniguchi
National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan
-
Kenji Watanabe
National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan., Research Center for Functional Materials, National Institute for Materials Science, Advanced, Materials Laboratory, NIMS, 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science Japan, NIMS, Japan, nims, National Institute for Materials Science, Research Center for Functional Materials, Japan, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), National Institute for Materials Science, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, Kyoto Univ, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan
-
Jerome Lagoute
Université Pari-Diderot
-
Robert A Kaindl
Arizona State University
-
-
Exploring non-equilibrium systems with normalizing flows
ORAL
–
Presenters
-
Christoph Schönle
Max Planck Inst for Sci Light
Authors
-
Christoph Schönle
Max Planck Inst for Sci Light
-
Vittorio Peano
Max Planck Institute for the Science of Light, Max Planck Inst for Sci Light
-
Florian Marquardt
Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-
-
-
Discovering dynamical symmetry breaking and resonances in nonlinear systems through AI.
ORAL
–
Publication: [1] G. D. Barmparis and G. P. Tsironis, "Discovering nonlinear resonances through physics-informed machine learning," J. Opt. Soc. Am. B, 38, C120-C126 (2021).<br><br>[2] G. P. Tsironis, G. D. Barmparis, D. K. Campbell, "Dynamical symmetry breaking through AI: The dimer self-trapping transition", Int. J. Mod. Phys. B, accepted.
Presenters
-
George P Tsironis
Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
Authors
-
George P Tsironis
Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
-
Georgios D Barmparis
Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
-
-
Sample generation for the spin-fermion model using neural networks .
ORAL
–
Presenters
-
Georgios Stratis
Northeastern University
Authors
-
Georgios Stratis
Northeastern University
-
Phillip E Weinberg
Northeastern University
-
Tales Imbiriba
Northeastern University
-
Pau Closas
Northeastern University
-
Adrian E Feiguin
Northeastern University
-
-
Deep Bayesian Experimental Design for Quantum Many-Body Systems
ORAL
–
Presenters
-
Leopoldo Sarra
Max Planck Inst for Sci Light
Authors
-
Leopoldo Sarra
Max Planck Inst for Sci Light
-
Florian Marquardt
Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-
-
-
Band gap predition of very large number of novel Van der Waals heterostructures using active learing models
ORAL
–
Publication: M. Fronzi*, O. Isayev, D. A. Winkler J. G. Shapter, A. V. Ellis, P. C. Sherrell, N. A. Shepelin, Al. Corletto, and M. J. Ford ``Active learning in Bayesian neural networks for the bandgap predictions of novel Van der Waals heterostructures'' Adv Int Sys 2100080, 1-7 (2021)
Presenters
-
Marco Fronzi
Shibaura Inst of Tech
Authors
-
Marco Fronzi
Shibaura Inst of Tech
-
Michael Ford
University of Technology Sydney
-
Dawid Winkler
La Trobe University
-
Olexandr Isayev
Carnegie Mellon University
-
-
Identifying Pauli spin blockade using deep learning with scarce experimental data
ORAL
–
Presenters
-
Jonas Schuff
University of Oxford
Authors
-
Jonas Schuff
University of Oxford
-
Dominic T Lennon
University of Oxford
-
Simon Geyer
University of Basel
-
David Craig
University of Oxford
-
Leon Camenzind
University of Basel
-
Federico Fedele
University of Oxford
-
Florian Vigneau
University of Oxford
-
Andreas V Kuhlmann
University of Basel
-
Richard J Warburton
University of Basel
-
Dominik M Zumbuhl
University of Basel
-
Dino Sejdinovic
University of Oxford
-
G. Andrew D Briggs
University of Oxford
-
Natalia Ares
University of Oxford
-