APS Logo

Data Science, Artificial Intelligence and Machine Learning

FOCUS · Q43 · ID: 48672






Presentations

  • Machine Learning for tuning, controlling, and optimizing semiconductor spin qubits

    ORAL · Invited

    Publication: 1. Identifying Pauli spin blockade using deep learning.<br>J. Schuff, D.T. Lennon, S. Geyer, D. Craig, F. Fedele, F. Vigneau, L.C. Camenzind, A.V. Kuhlmann, R.J. Warburton, D.M. Zumbühl, D. Sejdinovic, G.A.D. Briggs, N. Ares. Planned Paper (2021).<br>2. Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning.<br>B. Severin, D. T. Lennon, L. C. Camenzind, F. Vigneau, F. Fedele, D. Jirovec, A. Ballabio, D. Chrastina, G. Isella, M. de Kruijf, M. J. Carballido, S. Svab, A. V. Kuhlmann, F. R. Braakman, S. Geyer, F. N. M. Froning, H. Moon, M. A. Osborne, D. Sejdinovic, G. Katsaros, D. M. Zumbühl, G. A. D. Briggs, and N. Ares. Preprint, arXiv:2107.12975 (2021).<br>3. Deep Reinforcement Learning for Efficient Measurement of Quantum Devices.<br>V. Nguyen*, S. B. Orbell*, D.T. Lennon, H. Moon, F. Vigneau, L.C. Camenzind, L. Yu, D.M. Zumbühl, <br>G.A.D. Briggs, M. A. Osborne, D. Sejdinovic, and N. Ares. npj Quantum Information 7, 100 (2021).<br>4. Quantum device fine-tuning using unsupervised embedding learning.<br>N.M. van Esbroeck, D.T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L.C. Camenzind, L. Yu, <br>D.M. Zumbühl, G.A.D. Briggs, D. Sejdinovic, and N. Ares. New J. Phys. 22 09503 (2020) <br>5. Machine learning enables completely automatic tuning of a quantum device faster than human experts.<br>H. Moon*, D.T. Lennon*, J. Kirkpatrick, N.M. van Esbroeck, L.C. Camenzind, Liuqi Yu, F. Vigneau, D.M. Zumbühl, G.A.D. Briggs, M.A Osborne, D. Sejdinovic, E.A. Laird, N. Ares. Nature Communications 11, 4161 (2020)<br>6. Efficiently measuring a quantum device using machine learning.<br>D. T. Lennon, H. Moon, L. C. Camenzind, Liuqi Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, E. A. Laird, N. Ares. npj Quantum Information 5, 79 (2019)

    Presenters

    • Dominic T Lennon

      University of Oxford

    Authors

    • Leon Camenzind

      University of Basel

    • Dominic T Lennon

      University of Oxford

    • Vu Nguyen

      University of Oxford

    • Brandon Severin

      University of Oxford

    • Nina M van Esbroeck

      University of Oxford

    • James Kirkpatrick

      DeepMind, London, UK

    • Sebastian Orbell

      University of Oxford

    • Hyungil Moon

      University of Oxford

    • Jonas Schuff

      University of Oxford

    • Florian Vigneau

      University of Oxford

    • Liuqi Yu

      University of Maryland, College Park, University of Basel

    • Simon Geyer

      University of Basel

    • Andreas V Kuhlmann

      University of Basel

    • Florian N Froning

      University of Basel

    • Dino Sejdinovic

      University of Oxford

    • Michael A Osborne

      University of Oxford

    • Edward A Laird

      Lancaster University

    • G. Andrew D Briggs

      University of Oxford

    • Dominik M Zumbuhl

      University of Basel

    • Natalia Ares

      University of Oxford

    View abstract →

  • Combining machine learning with first principles to model the Curie temperature of magnetic Heusler compounds

    ORAL

    Presenters

    • Parul R Raghuvanshi

      Indian Institute of Technology Bombay

    Authors

    • Parul R Raghuvanshi

      Indian Institute of Technology Bombay

    • Krishnaraj Kundavu

      Indian Institute of Technology, Bombay, Indian Institute of Technology Bombay, IIT Bombay

    • Bhavana Panwar

      IIT Bombay

    • Prasun Keshri

      IIT Bombay

    • Rohit Pathak

      Indian Institute of Technology Bombay

    • Amrita Bhattacharya

      Indian Inst of Tech-Bombay

    View abstract →

  • Denoising scanning tunneling microscopy images with deep learning

    ORAL

    Presenters

    • Frederic F Joucken

      Arizona State University

    Authors

    • Frederic F Joucken

      Arizona State University

    • John L Davenport

      University of California, Santa Cruz

    • Zhehao Ge

      Department of Physics, University of California, Santa Cruz, University of California, Santa Cruz

    • Eberth Quezada-Lopez

      University of California, Santa Cruz

    • Takashi Taniguchi

      National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

    • Kenji Watanabe

      National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan., Research Center for Functional Materials, National Institute for Materials Science, Advanced, Materials Laboratory, NIMS, 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science Japan, NIMS, Japan, nims, National Institute for Materials Science, Research Center for Functional Materials, Japan, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), National Institute for Materials Science, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, Kyoto Univ, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

    • Jerome Lagoute

      Université Pari-Diderot

    • Robert A Kaindl

      Arizona State University

    View abstract →

  • Exploring non-equilibrium systems with normalizing flows

    ORAL

    Presenters

    • Christoph Schönle

      Max Planck Inst for Sci Light

    Authors

    • Christoph Schönle

      Max Planck Inst for Sci Light

    • Vittorio Peano

      Max Planck Institute for the Science of Light, Max Planck Inst for Sci Light

    • Florian Marquardt

      Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-

    View abstract →

  • Discovering dynamical symmetry breaking and resonances in nonlinear systems through AI.

    ORAL

    Publication: [1] G. D. Barmparis and G. P. Tsironis, "Discovering nonlinear resonances through physics-informed machine learning," J. Opt. Soc. Am. B, 38, C120-C126 (2021).<br><br>[2] G. P. Tsironis, G. D. Barmparis, D. K. Campbell, "Dynamical symmetry breaking through AI: The dimer self-trapping transition", Int. J. Mod. Phys. B, accepted.

    Presenters

    • George P Tsironis

      Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

    Authors

    • George P Tsironis

      Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

    • Georgios D Barmparis

      Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

    View abstract →

  • Deep Bayesian Experimental Design for Quantum Many-Body Systems

    ORAL

    Presenters

    • Leopoldo Sarra

      Max Planck Inst for Sci Light

    Authors

    • Leopoldo Sarra

      Max Planck Inst for Sci Light

    • Florian Marquardt

      Max Planck Inst for Sci Light, Friedrich-Alexander University Erlangen-Nürnberg, Friedrich-Alexander University Erlangen-Nürnberg, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-

    View abstract →

  • Band gap predition of very large number of novel Van der Waals heterostructures using active learing models

    ORAL

    Publication: M. Fronzi*, O. Isayev, D. A. Winkler J. G. Shapter, A. V. Ellis, P. C. Sherrell, N. A. Shepelin, Al. Corletto, and M. J. Ford ``Active learning in Bayesian neural networks for the bandgap predictions of novel Van der Waals heterostructures'' Adv Int Sys 2100080, 1-7 (2021)

    Presenters

    • Marco Fronzi

      Shibaura Inst of Tech

    Authors

    • Marco Fronzi

      Shibaura Inst of Tech

    • Michael Ford

      University of Technology Sydney

    • Dawid Winkler

      La Trobe University

    • Olexandr Isayev

      Carnegie Mellon University

    View abstract →

  • Identifying Pauli spin blockade using deep learning with scarce experimental data

    ORAL

    Presenters

    • Jonas Schuff

      University of Oxford

    Authors

    • Jonas Schuff

      University of Oxford

    • Dominic T Lennon

      University of Oxford

    • Simon Geyer

      University of Basel

    • David Craig

      University of Oxford

    • Leon Camenzind

      University of Basel

    • Federico Fedele

      University of Oxford

    • Florian Vigneau

      University of Oxford

    • Andreas V Kuhlmann

      University of Basel

    • Richard J Warburton

      University of Basel

    • Dominik M Zumbuhl

      University of Basel

    • Dino Sejdinovic

      University of Oxford

    • G. Andrew D Briggs

      University of Oxford

    • Natalia Ares

      University of Oxford

    View abstract →