Large-scale dynamics simulations of complex liquid electrolytes with NequIP equivariant machine learning models.
ORAL
Abstract
–
Publication: [1] Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J.P., Kornbluth, M., Molinari, N., Smidt, T.E. and Kozinsky, B., 2021. Se (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. arXiv preprint arXiv:2101.03164.<br>[2] Molinari, N., Mailoa, J.P. and Kozinsky, B., 2019. General trend of a negative Li effective charge in ionic liquid electrolytes. The journal of physical chemistry letters, 10(10), pp.2313-2319.
Presenters
-
Nicola Molinari
Harvard University, Robert Bosch LLC Research and Technology Center North America; Harvard University
Authors
-
Nicola Molinari
Harvard University, Robert Bosch LLC Research and Technology Center North America; Harvard University
-
Albert Musaelian
Harvard University
-
Simon L Batzner
Harvard University
-
Boris Kozinsky
Harvard University