Emerging Trends in Molecular Dynamics Simulations and Machine Learning III
FOCUS · N49 · ID: 47208
Presentations
-
Modeling Earth's interior from atomic to global scale
ORAL · Invited
–
Publication: 1) R. M. Wentzcovitch et al., DOI: 10.1073/pnas.081215010<br>2) G. Shephard et al., DOI: 10.1038/s41467-021-26115-z
Presenters
-
Renata M Wentzcovitch
Columbia Univ, Columbia University
Authors
-
Renata M Wentzcovitch
Columbia Univ, Columbia University
-
-
Molecular Dynamics Simulations of Solid Electrolytes with NequIP Equivariant Machine Learning Models
ORAL
–
Presenters
-
Juan F Gomez
Harvard University
Authors
-
Juan F Gomez
Harvard University
-
Liwen Wan
Lawrence Livermore National Lab
-
Simon L Batzner
Harvard University
-
Albert Musaelian
Harvard University
-
Brandon Wood
Lawrence Berkeley National Laboratory
-
Boris Kozinsky
Harvard University
-
-
Obtaining vibronic excitation spectra of small organic molecules using machine learning simulations and power spectra techniques
ORAL
–
Presenters
-
Andrew M Johannesen
University of Minnesota
Authors
-
Andrew M Johannesen
University of Minnesota
-
Jason D Goodpaster
University of Minnesota
-
-
Improved, Reliable Uncertainty Quantification of Interatomic Models using Sloppy Model Analysis
ORAL
–
Presenters
-
Yonatan Kurniawan
Brigham Young University
Authors
-
Yonatan Kurniawan
Brigham Young University
-
-
Large-scale dynamics simulations of complex liquid electrolytes with NequIP equivariant machine learning models.
ORAL
–
Publication: [1] Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J.P., Kornbluth, M., Molinari, N., Smidt, T.E. and Kozinsky, B., 2021. Se (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. arXiv preprint arXiv:2101.03164.<br>[2] Molinari, N., Mailoa, J.P. and Kozinsky, B., 2019. General trend of a negative Li effective charge in ionic liquid electrolytes. The journal of physical chemistry letters, 10(10), pp.2313-2319.
Presenters
-
Nicola Molinari
Harvard University, Robert Bosch LLC Research and Technology Center North America; Harvard University
Authors
-
Nicola Molinari
Harvard University, Robert Bosch LLC Research and Technology Center North America; Harvard University
-
Albert Musaelian
Harvard University
-
Simon L Batzner
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Application of Machine Learning to the Development of Ti Interatomic Potentials
ORAL
–
Publication: N/A
Presenters
-
Sean J O'Connor
Honeywell FM&T
Authors
-
Sean J O'Connor
Honeywell FM&T
-
Volker Eyert
Materials Design, Inc
-
Jörg-Rüdiger Hill
Materials Design, Inc
-
David Reith
Materials Design, Inc
-
Erich Wimmer
Materials Design, Inc
-
Patrick R Thomas
Honeywell FM&T, Department of Energy's Kansas City National Security Campus Managed by Honeywell FM&T
-
Ben Sikora
Honeywell FM&T, Department of Energy's Kansas City National Security Campus Managed by Honeywell FM&T
-
Paul Rulis
University of Missouri - Kansas City
-
-
Artifactual Liquid-Liquid Hydrogen Phase Transition from a Machine-Learnt Potential
ORAL
–
Publication: Nature "Matters Arising", in press
Presenters
-
Samuel B Trickey
University of Florida
Authors
-
Samuel B Trickey
University of Florida
-
Valentin Karasiev
University of Rochester
-
Joshua Hinz
University of Rochester
-
Suxing Hu
Laboratory for Laser Energetics, University of Rochester
-
-
Machine Learned Interatomic Potential Development for W-ZrC
ORAL
–
Presenters
-
Ember L Sikorski
Sandia National Laboratories
Authors
-
Ember L Sikorski
Sandia National Laboratories
-
Julien Tranchida
CEA Cadarache, CEA
-
Mary Alice Cusentino
Sandia National Laboratories
-
Mitchell A Wood
Sandia National Laboratories
-
Aidan P Thompson
Sandia National Laboratories
-
-
Deep Potential Development of Highly Concentrated/High Entropy-driven Carbides
ORAL
–
Presenters
-
Tyler J McGilvry-James
Missouri State University
Authors
-
Tyler J McGilvry-James
Missouri State University
-
Marium Mostafiz Mou
Missouri State University
-
Ridwan Sakidja
Missouri State University, Physics, Astronomy and Materials Science, Missouri State University
-
-
Generative Coarse-Graining
ORAL
–
Presenters
-
Wujie Wang
Massachusetts Institute of Technology MI
Authors
-
Wujie Wang
Massachusetts Institute of Technology MI
-
-
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
ORAL
–
Publication: - H.E. Sauceda, M. Gastegger, S. Chmiela, K.-R. Müller, A. Tkatchenko "Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields" Journal of Chemical Physics 153 (12), 124109 (2020)<br>- H.E. Sauceda, V. Vassilev-Galindo, S. Chmiela, K.-R. Müller, A. Tkatchenko "Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature" Nature Communications 12 (1), 1-10 (2021)<br>- H.E. Sauceda, L.E. Gálvez-González, S. Chmiela, L.O. Paz-Borbón, K.-R. Müller, A. Tkatchenko "BIGDML: Towards Exact Machine Learning Force Fields for Materials" arXiv:2106.04229 (2021)
Presenters
-
Huziel E Sauceda
Technical University of Berlin
Authors
-
Huziel E Sauceda
Technical University of Berlin
-
Valentin Vassilev Galindo
University of Luxembourg Limpertsberg
-
Stefan Chmiela
Tech Univ Berlin
-
Klaus-Robert Müller
Technical University of Berlin
-
Alexandre Tkatchenko
University of Luxembourg Limpertsberg
-
-
Quantum paraelectricity and structural phase transitions of SrTiO<sub>3</sub> by on-the-fly machine-learned interatomic potentials
ORAL
–
Presenters
-
Carla Verdi
Univ of Vienna, University of Vienna
Authors
-
Carla Verdi
Univ of Vienna, University of Vienna
-
Luigi Ranalli
Univ of Vienna
-
Cesare Franchini
University of Vienna, Univ of Vienna, Univ of Vienna, Univ of Bologna, Universita' di Bologna & University of Vienna, University of Vienna, A-1090 Vienna, Austria, Alma Mater Studiorum–Università di Bologna, Bologna, 40127, Italy
-
Georg Kresse
Univ of Vienna, University of Vienna
-