APS Logo

Quantitative strain mapping in Si<sub>0.7</sub>Ge<sub>0.3</sub>/Si/ Si<sub>0.7</sub>Ge<sub>0.3</sub> heterostructures for spin qubits

ORAL

Abstract

We present laterally resolved maps of the lattice strains around spin qubits housed in Si/SiGe heterostructures and demonstrate that that material related inhomogeneities must be taken into account in the optimization and design for scaled CMOS-compatible quantum processors. 

The Si/SiGe material system is promising for large-scale integration of solid state qubits due to the demonstration of high coherence times and multi-qubit algorithms. One key requirement for realizing large arrays of qubits with shared gate control is a high degree of homogeneity of the lattice strains. Here, we leverage Scanning Xray Diffraction Microscopy (SXDM) at ID01/ESRF to investigate non-destructively the lattice homogeneity in Si/SiGe heterostructures. We map the strain tensor in a 10 nm thick Si QW with a lateral resolution below 50 nm and determine local strain variations larger than 1e-4. Based on the experimental data, we perform Finite Element Method (FEM) thermomechanical simulations to calculate the strain distribution at low temperature. Furthermore, the strain maps are translated into spatially resolved profiles for the energy of the conduction band valley state, the variation of which is found to be of the magnitude as the charging energy of an electrostatic quantum dot of approx. 1 meV

Publication: C. Corley-Wiciak, C. Richter, M. Montanari, A. Corley-Wiciak, I. Zaitsev, C. Manganelli, M. H. Zoellner, E. Zatterin, T. Schuelli, N. W. Hendrickx, A. Sammak, M. Veldhorst, G. Scappucci, G. Capellini, W. M. Klesse. Quantitative strain mapping in a functional Ge/Si0.2Ge0.8 hole spin qubit. TBP.

Presenters

  • Cedric Corley-Wiciak

    IHP - Leibniz Institute for Innovations for High Performance

Authors

  • Cedric Corley-Wiciak

    IHP - Leibniz Institute for Innovations for High Performance

  • Carsten Richter

    IKZ – Leibniz -Institut für Kristallzüchtung

  • Wolfgang M Klesse

    Innovations for High Performance Microelectronics, IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Eduardo Zatterin

    ESRF – European Synchrotron Radiation Facility

  • Tobias Schuelli

    ESRF – European Synchrotron Radiation Facility

  • Agnieszka A Corley-Wiciak

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Ignatii Zaitsev

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Costanza L Manganelli

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Giovanni Capellini

    Dipartimento di Scienze, Universita Roma Tre; IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Michele Virgilio

    Università di Pisa

  • Wolfram Langheinrich

    Infineon Technologies Dresden GmbH&Co.KG,

  • Ketan Anand

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Yuji Yamamoto

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Marvin H Zoellner

    IHP - Leibniz Institute for Innovations for High Performance Microelectronics

  • Malte Neul

    RWTH Aachen University,

  • Lars R Schreiber

    JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen, RWTH Aachen University,

  • Inga Seidler

    JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen University

  • Ran Xue

    JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen University

  • Yujia Liu

    IKZ - Leibniz - Institut für Kristallzüchtung