Quantitative strain mapping in Si<sub>0.7</sub>Ge<sub>0.3</sub>/Si/ Si<sub>0.7</sub>Ge<sub>0.3</sub> heterostructures for spin qubits
ORAL
Abstract
The Si/SiGe material system is promising for large-scale integration of solid state qubits due to the demonstration of high coherence times and multi-qubit algorithms. One key requirement for realizing large arrays of qubits with shared gate control is a high degree of homogeneity of the lattice strains. Here, we leverage Scanning Xray Diffraction Microscopy (SXDM) at ID01/ESRF to investigate non-destructively the lattice homogeneity in Si/SiGe heterostructures. We map the strain tensor in a 10 nm thick Si QW with a lateral resolution below 50 nm and determine local strain variations larger than 1e-4. Based on the experimental data, we perform Finite Element Method (FEM) thermomechanical simulations to calculate the strain distribution at low temperature. Furthermore, the strain maps are translated into spatially resolved profiles for the energy of the conduction band valley state, the variation of which is found to be of the magnitude as the charging energy of an electrostatic quantum dot of approx. 1 meV
–
Publication: C. Corley-Wiciak, C. Richter, M. Montanari, A. Corley-Wiciak, I. Zaitsev, C. Manganelli, M. H. Zoellner, E. Zatterin, T. Schuelli, N. W. Hendrickx, A. Sammak, M. Veldhorst, G. Scappucci, G. Capellini, W. M. Klesse. Quantitative strain mapping in a functional Ge/Si0.2Ge0.8 hole spin qubit. TBP.
Presenters
-
Cedric Corley-Wiciak
IHP - Leibniz Institute for Innovations for High Performance
Authors
-
Cedric Corley-Wiciak
IHP - Leibniz Institute for Innovations for High Performance
-
Carsten Richter
IKZ – Leibniz -Institut für Kristallzüchtung
-
Wolfgang M Klesse
Innovations for High Performance Microelectronics, IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Eduardo Zatterin
ESRF – European Synchrotron Radiation Facility
-
Tobias Schuelli
ESRF – European Synchrotron Radiation Facility
-
Agnieszka A Corley-Wiciak
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Ignatii Zaitsev
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Costanza L Manganelli
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Giovanni Capellini
Dipartimento di Scienze, Universita Roma Tre; IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Michele Virgilio
Università di Pisa
-
Wolfram Langheinrich
Infineon Technologies Dresden GmbH&Co.KG,
-
Ketan Anand
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Yuji Yamamoto
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Marvin H Zoellner
IHP - Leibniz Institute for Innovations for High Performance Microelectronics
-
Malte Neul
RWTH Aachen University,
-
Lars R Schreiber
JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen, RWTH Aachen University,
-
Inga Seidler
JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen University
-
Ran Xue
JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, RWTH Aachen University
-
Yujia Liu
IKZ - Leibniz - Institut für Kristallzüchtung