Results and Lessons Learned from the "Accelerating Radio Frequency Modeling Using Machine Learning" Project
ORAL
Abstract
–
Publication: A ́. S ́anchez-Villar et al, Nucl. Fusion . under review,"Real-time capable modelling of ICRF heating on NSTX and WEST via machine learning approaches"
Wallace et al, ""Towards Fast, Accurate Predictions of RF Simulations via Data-driven Modeling: Forward and Lateral Models" AIP Conf. Proc. 2984, 090008 (2023), https://doi.org/10.1063/5.0162422
G M Wallace et al. "Towards fast and accurate predictions of radio frequency power deposition and current profile via data-driven modelling: applications to lower hybrid current drive". In: Journal of Plasma Physics 88.4 (2022), p.895880401. DOI: 10.1017/S0022377822000708.
W. Bethel, eScience 2024 under review, "Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio-Frequency Heating in Fusion Energy Science"
Presenters
-
John Christopher Wright
MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology
Authors
-
John Christopher Wright
MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology
-
Gregory Marriner Wallace
MIT Plasma Science and Fusion Center, MIT PSFC
-
G. Pyeon
MIT
-
E. W. Bethel
San Francisco State University
-
Vianna Cramer
SFSU
-
Talita Perciano
Lawrence Berkeley National Laboratory
-
E. Arias
LBL
-
R. Sadre
LBNL
-
Syun'ichi Shiraiwa
Princeton Plasma Physics Laboratory
-
Nicola Bertelli
Princeton Plasma Physics Laboratory, Princeton University / Princeton Plasma Physics Laboratory
-
Alvaro Sanchez-Villar
Princeton University / Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory
-
Alexander del Rio
San Francisco State University
-
Lothar Narins
San Francisco State University
-
Chris Pestano
San Francisco State University
-
Satvik Verma
San Francisco State University