Joint ICF & MFE: Machine Learning and Data Science Technologies
ORAL · TO07 · ID: 2647417
Presentations
-
Artificial Intelligence-assisted control of Alfvén Eigenmodes improves plasma stability in the DIII-D tokamak
ORAL
–
Presenters
-
Alvin V Garcia
Princeton University
Authors
-
Alvin V Garcia
Princeton University
-
Azarakhsh Jalalvand
Princeton University
-
Andy Rothstein
Princeton University
-
Michael A Van Zeeland
General Atomics, General Atomics - San Diego
-
Xiaodi Du
General Atomics
-
Deyong Liu
General Atomics
-
William Walter Heidbrink
University of California, Irvine
-
Egemen Kolemen
Princeton University
-
-
Combining physics-based simulations and experimental data from multiple machines to predict and control tokamak profile evolution
ORAL
–
Presenters
-
Joseph A Abbate
Princeton Plasma Physics Laboratory
Authors
-
Joseph A Abbate
Princeton Plasma Physics Laboratory
-
Egemen Kolemen
Princeton University
-
Emiliano Fable
Max Planck Institut fur Plasmaphysik
-
Giovanni Tardini
Max Planck Institut fur Plasmaphysik
-
Hiro Josep Farre Kaga
Princeton Plasma Physics Lab, Princeton Plasma Physics Laboratory
-
-
Machine Learning model for real-time SPARC vertical stability observers
ORAL
–
Presenters
-
Arunav Kumar
Massachusetts Institute of Technology, Australian National University
Authors
-
Arunav Kumar
Massachusetts Institute of Technology, Australian National University
-
Cesar F Clauser
Massachusetts Institute of Technology
-
Theodore Golfinopoulos
Massachusetts Institute of Technology MI
-
Francesco Carpanese
Neural Concept
-
A. O Nelson
Columbia University
-
Darren T Garnier
OpenStar Technologies
-
Josiah T Wai
Commonwealth Fusion Systems
-
Dan D Boyer
Commonwealth Fusion Systems
-
Alex R Saperstein
Massachusetts Institute of Technology
-
Robert S Granetz
Massachusetts Institute of Technology
-
Devon J Battaglia
Commonwealth Fusion Systems
-
Cristina Rea
Massachusetts Institute of Technology
-
-
Results and Lessons Learned from the "Accelerating Radio Frequency Modeling Using Machine Learning" Project
ORAL
–
Publication: A ́. S ́anchez-Villar et al, Nucl. Fusion . under review,"Real-time capable modelling of ICRF heating on NSTX and WEST via machine learning approaches"
Wallace et al, ""Towards Fast, Accurate Predictions of RF Simulations via Data-driven Modeling: Forward and Lateral Models" AIP Conf. Proc. 2984, 090008 (2023), https://doi.org/10.1063/5.0162422
G M Wallace et al. "Towards fast and accurate predictions of radio frequency power deposition and current profile via data-driven modelling: applications to lower hybrid current drive". In: Journal of Plasma Physics 88.4 (2022), p.895880401. DOI: 10.1017/S0022377822000708.
W. Bethel, eScience 2024 under review, "Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio-Frequency Heating in Fusion Energy Science"Presenters
-
John Christopher Wright
MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology
Authors
-
John Christopher Wright
MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology
-
Gregory Marriner Wallace
MIT Plasma Science and Fusion Center, MIT PSFC
-
G. Pyeon
MIT
-
E. W. Bethel
San Francisco State University
-
Vianna Cramer
SFSU
-
Talita Perciano
Lawrence Berkeley National Laboratory
-
E. Arias
LBL
-
R. Sadre
LBNL
-
Syun'ichi Shiraiwa
Princeton Plasma Physics Laboratory
-
Nicola Bertelli
Princeton Plasma Physics Laboratory, Princeton University / Princeton Plasma Physics Laboratory
-
Alvaro Sanchez-Villar
Princeton University / Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory
-
Alexander del Rio
San Francisco State University
-
Lothar Narins
San Francisco State University
-
Chris Pestano
San Francisco State University
-
Satvik Verma
San Francisco State University
-
-
Simulation-Based Inference of High Field Side Scrape-Off Layer Filament Characteristics using Profile Reflectometry
ORAL
–
Presenters
-
Evan Leppink
MIT PSFC
Authors
-
Evan Leppink
MIT PSFC
-
Stephen James Wukitch
MIT, MIT PSFC
-
-
Physics Informed, Automated and Highly Parallel Bayesian Optimization of Direct-Drive Implosions
ORAL
–
Presenters
-
Varchas Gopalaswamy
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics - Rochester
Authors
-
Varchas Gopalaswamy
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics - Rochester
-
Riccardo Betti
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energy, Rochester, NY, USA.
-
Aarne Lees
University of Rochester - Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Cliff A Thomas
University of Rochester, Laboratory for Laser Energetics, University of Rochester
-
Timothy J Collins
Laboratory for Laser Energetics, University of Rochester
-
Kenneth S Anderson
Laboratory for Laser Energetics, University of Rochester
-
-
Optimizing Cylindrical Targets for Neutron Yield Using Multi-Fidelity Modeling Techniques
ORAL
–
Publication: W. Gammel, J.P. Sauppe, "Improving Neutron Yield Estimates in Cylindrical Targets through Multi-Fidelity Modeling," in preparation for Physics of Plasmas (2024).
Presenters
-
William Gammel
Los Alamos National Laboratory
Authors
-
William Gammel
Los Alamos National Laboratory
-
Joshua Paul Sauppe
Los Alamos National Laboratory
-
Kevin K Lin
The University of Arizona
-
-
Exploring robust, high yield ICF designs using Bayesian optimization
ORAL
–
Presenters
-
Shailaja Humane
University of Michigan
Authors
-
Shailaja Humane
University of Michigan
-
Eugene Kur
Lawrence Livermore National Laboratory
-
Kelli D Humbird
Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab
-
Carolyn C Kuranz
University of Michigan
-
-
Optimizing the Performance of Direct-Drive Implosion Experiments Using Meta-Bayesian Optimization
ORAL
–
Publication: FusionMamba: A Framework Utilizing Online Policy Adaptation Modules and Mamba for Optimization of Inertial Confinement Fusion Experiments (In preperation for TMLR)
Presenters
-
Rahman Ejaz
Laboratory for Laser Energetics, University of Rochester
Authors
-
Rahman Ejaz
Laboratory for Laser Energetics, University of Rochester
-
Varchas Gopalaswamy
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics - Rochester
-
Ricardo Luna
Hewlett Packard Labs, Hewlett Packard Enterprise, Milpitas, CA USA
-
Vineet Gundecha
Hewlett Packard Labs, Hewlett Packard Enterprise
-
Aarne Lees
University of Rochester - Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Riccardo Betti
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energy, Rochester, NY, USA.
-
Sahand Ghorbanpour
Hewlett Packard Labs, Hewlett Packard Enterprise
-
Soumyendu Sarkar
Hewlett Packard Labs, Hewlett Packard Enterprise
-
Christopher Kanan
Department of Computer Science, University of Rochester
-
-
Experimental Demonstration of 3D Hot-spot Shape Symmetry Control in Laser Direct-Drive Inertial Confinement Fusion Implosions
ORAL
–
Presenters
-
Ka Ming Woo
Laboratory for Laser Energetics, University of Rochester
Authors
-
Ka Ming Woo
Laboratory for Laser Energetics, University of Rochester
-
Kristen Churnetski
University of Rochester
-
Riccardo Betti
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energy, Rochester, NY, USA.
-
Christian Stoeckl
Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Cliff A Thomas
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics, University of Rochester Laboratory for Laser Energetics (LLE)
-
Timothy J Collins
Laboratory for Laser Energetics, University of Rochester
-
Luke A Ceurvorst
Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Siddharth Sampat
Laboratory for Laser Energetics
-
Varchas Gopalaswamy
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics - Rochester
-
Aarne Lees
University of Rochester - Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Steven T Ivancic
Lab for Laser Energetics
-
Michael Michalko
Laboratory for Laser Energetics
-
James P Knauer
Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Duc M Cao
Laboratory for Laser Energetics, University of Rochester, U. Rochester/LLE
-
Kenneth S Anderson
Laboratory for Laser Energetics, University of Rochester
-
Alexander Shvydky
Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester - Laboratory for Laser Energetics
-
Rahul C Shah
Laboratory for Laser Energetics - Rochester, University of Rochester - Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester
-
Peter V Heuer
Laboratory for Laser Energetics
-
Sean P Regan
Laboratory for Laser Energetics, University of Rochester
-
Michael J Rosenberg
University of Rochester Laboratory for Laser Energetics (LLE), Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
-
AI-assisted prediction of laser-plasma instabilities for inertial confinement fusion
ORAL
–
Presenters
-
Chuang Ren
University of Rochester
Authors
-
Chuang Ren
University of Rochester
-
Tong Geng
University of Rochester
-
Michael C Huang
University of Rochester
-
Dongfang Liu
Rochester Institute of Technology
-
-
Predictive Machine Learning Model of Stimulated Brillouin Backscatter at the National Ignition Facility
ORAL
–
Presenters
-
Eugene Kur
Lawrence Livermore National Laboratory
Authors
-
Eugene Kur
Lawrence Livermore National Laboratory
-
Colin Bruulsema
Lawrence Livermore National Laboratory
-
Tom D Chapman
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Nuno Lemos
Lawrence Livermore Natl Lab
-
Pierre A Michel
Lawrence Livermore National Laboratory
-
David Jerome Strozzi
Lawrence Livermore Natl Lab
-
-
Comparison of Mo versus W for Double Shell Target Capsules using Machine Learning Optimization
ORAL
–
Presenters
-
Nomita Vazirani
Los Alamos National Lab
Authors
-
Nomita Vazirani
Los Alamos National Lab
-
Ryan F Sacks
LANL
-
Brian Michael Haines
Los Alamos National Laboratory
-
Michael J Grosskopf
Los Alamos National Lab
-
David Stark
William & Mary
-
Paul A Bradley
Los Alamos Natl Lab
-
Eric N Loomis
Los Alamos Natl Lab, Los Alamos National Laboratory
-
Elizabeth Catherine Merritt
Los Alamos National Laboratory, Los Alamos National Laboratory (LANL)
-
Harry Francis Robey
Los Alamos National Laboratory
-