Boltzmann-BCA Analysis on the Role of Charge Exchange in Microscopic Erosion of Fusion-Relevant Plasma Facing Components

POSTER

Abstract

Charge-exchange is expected to play an important role in microscopic erosion of plasma facing components under fusion-relevant conditions. In this work we present a set of detailed Boltzmann simulations of the near-wall plasma including surface response, with the goal of highlighting the relative role of charge exchange against ion-induced erosion. The simulations reveal that the charge-exchange processes occurring in the collisional presheath release energetic neutrals toward the wall with angular distributions ranging from grazing to normal incidence; the ions accelerated across the collisional and magnetic presheath acts as a dominant factor in affecting the initial phase of the neutral population reaching the wall, and ultimately its energy-angle distribution at the surface. The effect on erosion rates, plasma sheath/presheath structure, and moments of the distributions are highlighted. The study has been made possible thanks to a newly-developed dynamically-coupled Boltzmann-BCA model retaining the effects of both the plasma and the material erosion.

Authors

  • Shane Keniley

    University of Illinois at Urbana-Illinois

  • Davide Curreli

    University of Illinois at Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, University of Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana Champaign, Urbana, IL 61801, Univ of Illinois - Urbana, University of Illinois at Urbana-Champaign, USA