Conservative discontinuous Galerkin discretizations of the 2D incompressible Euler equation

POSTER

Abstract

Discontinuous Galerkin (DG) methods provide local high-order adaptive numerical schemes for the solution of convection-diffusion problems. They combine the advantages of finite element and finite volume methods. In particular, DG methods automatically ensure the conservation of all first-order invariants provided that single-valued fluxes are prescribed at inter-element boundaries. For the 2D incompressible Euler equation, this implies that the discretized fluxes globally obey Gauss' and Stokes' laws exactly, and that they conserve total vorticity. Liu and Shu [J. Comp. Phys. 160, 577 (2000)] have shown that combining a continuous Galerkin (CG) solution of Poisson's equation with a central DG flux for the convection term leads to an algorithm that conserves the principal two quadratic invariants, namely the energy and enstrophy. Here, we present a discretization that applies the DG method to Poisson's equation as well as to the vorticity equation while maintaining conservation of the quadratic invariants. Using a DG algorithm for Poisson's equation can be advantageous when solving problems with mixed Dirichlet-Neuman boundary conditions such as for the injection of fluid through a slit (Bickley jet) or during compact toroid injection for tokamak startup. .

Authors

  • Francois Waelbroeck

    Institute for Fusion Studies, University of Texas at Austin

  • Craig Michoski

    Institute for Computational and Engineering Science, University of Texas at Austin

  • Tess Bernard

    Institute for Fusion Studies, University of Texas at Austin