Numerical Modeling of HHFW Heating and Current Drive on NSTX

POSTER

Abstract

High harmonic fast wave (HHFW) heating and current drive, at frequencies up to 15 times the fundamental deuterium cyclotron frequency, are being studied on NSTX. Recent experiments indicate that the core heating efficiency depends strongly on the antenna phasing and plasma conditions [1], and improves significantly at higher toroidal magnetic fields. Wave propagation, absorption and current drive characteristics for L-mode and H-mode NSTX discharges have been analyzed using both ray tracing and full wave models. Simulations obtained with the AORSA and TORIC full codes agree reasonably well with Motional Stark Effect measurements of the driven current, and indicate the importance of trapping effects on the driven current profile. Collisional damping effects on the wave absorption, particularly in edge regions, will be considered. [1] J. C. Hosea, \textit{et al}, Phys. Plasmas \textbf{15}, 056104 (2008).

Authors

  • C.K. Phillips

    PPPL, Princeton Plasma Physics Laboratory

  • R.E. Bell

    Princeton University, PPPL, Princeton Plasma Physics Laboratory

  • J. Hosea

    PPPL, Princeton Plasma Physics Laboratory

  • Benoit LeBlanc

    Princeton Plasma Physics Laboratory, PPPL

  • G. Taylor

    PPPL, Princeton Plasma Physics Laboratory

  • E.J. Valeo

    Princeton Plasma Physics Laboratory, PPPL, Princeton, NJ

  • J.R. Wilson

    PPPL, Princeton Plasma Physics Laboratory

  • L.A. Berry

    Oak Ridge National Laboratory, ORNL

  • E.F. Jaeger

    Oak Ridge National Laboratory, ORNL

  • P.M. Ryan

    Oak Ridge National Laboratory

  • J.B. Wilgen

    Oak Ridge National Laboratory, ORNL

  • P.T. Bonoli

    MIT PSFC, PSFC-MIT, MIT, MIT Plasma Science and Fusion Center, PSFC, MIT, Cambridge, MA

  • J.C. Wright

    MIT Plasma Science and Fusion Center, MIT PSFC, PSFC-MIT

  • R.W. Harvey

    CompX

  • H. Yuh

    Nova Photonics