APS Logo

Rotons and Bose condensation in Rydberg-dressed Bose gases

POSTER

Abstract

We investigate the ground-state properties and excitations of Rydberg-dressed bosons using the hypernetted-chain Euler-Lagrange approximation, which accounts for correlations and thus goes beyond the mean-field approximation. The short-range behavior of the pair distribution function signals the instability of the homogeneous system with respect to the formation of droplet crystals at strong couplings and large soft-core radius. This tendency to spatial density modulation coexists with off-diagonal long-range order. The contribution of the correlation energy to the ground-state energy is significant at large coupling strengths and intermediate values of the soft-core radius while for a larger soft-core radius the ground-state energy is dominated by the mean-field (Hartree) energy. We have also performed path integral Monte Carlo simulations at selected system parameters to verify the performance of our hypernetted-chain Euler-Lagrange results. In the homogeneous phase, the two approaches are in very good agreement. Moreover, Monte Carlo simulations predict a first-order quantum phase transition from a homogeneous superfluid phase to the quantum droplet phase with face-centered cubic symmetry for Rydberg-dressed bosons.

Authors

  • Bilal Tanatar

    Bilkent University, Ankara, Turkey

  • Iran Seydi

    Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

  • Saeed H. Abedinpour

    Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

  • Robert E. Zillich

    Johannes Kepler University, Linz, Austria

  • Reza Asgari

    Institute for Research in Fundamental Sciences (IPM), Tehran, Iran