On the Emission of the Gravitational Radiation by Light via Gravitational Redshift
ORAL
Abstract
In this research, it has been shown that the energy difference during the redshift is equal to the energy difference emitted by a massless field wave moving away from a central mass. Therefore, gravitational redshift is explained to be a phenomenon caused by gravitational waves emitted by a photon moving away from the gravitational field. Using the definition of the gravitational waves according to the Teleparallel Equivalent of General Relativity (TEGR), it has been shown that the energy difference due to gravitational redshift which usually explained as the energy difference due to gravitational time dilation experienced by observers at different distances from the gravitating object. Hence, it is shown that the difference between the two observed energies of the gravitational redshift of light is calculated and is the same as the value obtained in TEGR. Since gravitational waves in TEGR is equivalent to General Relativity, gravitational redshift might be one of the oldest, therefore the first indirect experimental proof of the existence of gravitational waves.
–
Publication: [1] Einstein, A. (1907). Uber das Relativit¨atsprinzip und die aus demselben gezogenen Folgerungen, Jahrb. d. ¨ Radioaktivit¨at u. Elektronik. IV, 454. <br>[2] Einstein, A. (1923). Die grundlage der allgemeinen relativit¨atstheorie. In Das Relativit¨atsprinzip (pp. 81-124). Vieweg+ Teubner Verlag, Wiesbaden. <br>[3] Hohensee, M. A., Estey, B., Monsalve, F., Kim, G., Kuan, P. C., Lan, S. Y., M¨uller, H. (2011, January). Gravitational redshift, equivalence principle, and matter waves. In Journal of Physics: Conference Series (Vol. 264, No. 1, p. 012009). IOP Publishing. doi:10.1088/1742-6596/264/1/012009 <br>[4] Pound, R. V., and Snider, J. L. (1965). Effect of gravity on gamma radiation. Physical Review, 140(3B), B788. doi:10.1103/PhysRev.140.B788 <br>[5] M¨uller, H., Peters, A., and Chu, S. (2010). A precision measurement of the gravitational redshift by the interference of matter waves. Nature, 463(7283), 926-929. doi:10.1038/nature08776 <br>[6] Eddington, A. S. (1923). The mathematical theory of relativity. The University Press. doi:10.1038/nature08776 <br>[7] Weinberg, S. (1972). Principles and Applications of the General Theory of Relativity: Gravitation and Cosmology. Wiley. <br>[8] Møller, C. (1972). The theory of relativity. <br>[9] Koks, D. (2020). The Uniformly Accelerated Frame as a Test Bed for Analysing the Gravitational Redshift. Universe, 7(1), 4. doi:10.3390/universe7010004 <br>[10] Gronke, M. B., Llinares, C., and Mota, D. F. (2014). Gravitational redshift profiles in the f (R) and symmetron models. Astronomy and Astrophysics, 562, A9. doi:10.1051/0004-6361/201322403 <br>[11] Feynman, R. P., Morinigo, F. B., Wagner, W. G., Hatfield, B., Preskill, J., and Thorne, K. S. (2018). Feynman lectures on gravitation. CRC Press. doi:10.1201/9780429502859 <br>[12] Ufrecht, C., Di Pumpo, F., Friedrich, A., Roura, A., Schubert, C., Schlippert, D., ... and Giese, E. (2020). Atom-interferometric test of the universality of gravitational redshift and free fall. Physical Review Research, 2(4), 043240. doi:10.1103/PhysRevResearch.2.043240 <br>[13] Zhao, H., Peacock, J. A., and Li, B. (2013). Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters. Physical Review D, 88(4), 043013. doi:10.1103/PhysRevD.88.043013 <br>[14] Farrugia, G., Said, J. L., and Ruggiero, M. L. (2016). Solar System tests in f (T) gravity. Physical Review D, 93(10), 104034. doi:10.1103/PhysRevD.93.104034 <br>[15] Einstein, A. (2005). N¨aherungsweise integration der feldgleichungen der gravitation. Albert Einstein: AkademieVortr¨age: Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914–1932, 99-108. <br>[16] Eddington, A. S. (1922). The propagation of gravitational waves. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 102(716), 268-282. <br>[17] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... and Cavalieri, R. (2016). Observation of gravitational waves from a binary black hole merger. Physical review letters, 116(6), 061102. doi:10.1103/PhysRevLett.116.061102 <br>[18] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... and Baiardi, L. C. (2016). GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 93(12), 122003. doi:10.1103/PhysRevD.93.122003 <br>[19] Taylor, J. H., and Weisberg, J. M. (1982). A new test of general relativity-Gravitational radiation and the binary pulsar PSR 1913+ 16. The Astrophysical Journal, 253, 908-920. doi:10.1086/159690 <br>[20] Abramovici, A., Althouse, W. E., Drever, R. W., G¨ursel, Y., Kawamura, S., Raab, F. J., ... and Zucker, M. E. (1992). LIGO: The laser interferometer gravitational-wave observatory. science, 256(5055), 325-333. doi:10.1126/science.256.5055.325 <br>[21] Weiss, R. (2018). LIGO and the discovery of gravitational waves, I: Nobel lecture, December 8, 2017. doi:10.1002/andp.201800349 <br>[22] Barish, B. C. (2018). Nobel Lecture: LIGO and gravitational waves II. Reviews of Modern Physics, 90(4), 040502. doi:10.1103/RevModPhys.90.040502 <br>[23] Thorne, K. S. (2018). Nobel Lecture: LIGO and gravitational waves III*. Reviews of Modern Physics, 90(4), 040503. doi:10.1103/RevModPhys.90.040503 7 <br>[24] Einstein, A. (1930). Auf die riemann-metrik und den fern-parallelismus gegr¨undete einheitliche feldtheorie. Mathematische Annalen, 102(1), 685-697. <br>[25] Møller, C. (1961). Further remarks on the localization of the energy in the general theory of relativity. Annals of Physics, 12(1), 118-133. doi:10.1016/0003-4916(61)90148-8 <br>[26] Møller, C. (1961). Tetrad fields and conservation laws in general relativity. Evidence for Gravitational Theories, 252. doi:10.1016/0003-4916(61)90148-8 <br>[27] Cho, Y. M. (1976). Einstein lagrangian as the translational Yang-Mills lagrangian. Physical Review D, 14(10), 2521. doi:10.1103/PhysRevD.14.2521 <br>[28] Cho, Y. M. (1976). Gauge theory of Poincar´e symmetry. Physical Review D, 14(12), 3335. doi:10.1103/PhysRevD.14.3335 <br>[29] Abedi, H., and Capozziello, S. (2018). Gravitational waves in modified teleparallel theories of gravity. The European Physical Journal C, 78(6), 1-9. doi:10.1140/epjc/s10052-018-5967-x <br>[30] Sharif, M., and Taj, S. (2010). Energy Contents of Gravitational Waves in Teleparallel Gravity. Modern Physics Letters A, 25(03), 221-232. doi:10.1142/S0217732310031488 <br>[31] De Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Gravitational energy-momentum density in teleparallel gravity. Physical Review Letters, 84(20), 4533. doi:10.1103/PhysRevLett.84.4533 <br>[32] Maluf, J. W. (2005). The gravitational energy-momentum tensor and the gravitational pressure. Annalen der Physik, 517(11-12), 723-732. doi:10.1002/andp.200510161 <br>[33] Maluf, J. W., Faria, F. F., and Castello-Branco, K. H. (2003). The gravitational energy–momentum flux. Classical and Quantum Gravity, 20(21), 4683. doi:10.1088/0264-9381/20/21/008 <br>[34] Maluf, J. W., and Ulhoa, S. C. (2008). The energy-momentum of plane-fronted gravitational waves in the teleparallel equivalent of GR. Physical Review D, 78(4), 047502. doi:10.1103/PhysRevD.78.069901 <br>[35] Maluf, J. W. (1994). Hamiltonian formulation of the teleparallel description of general relativity. Journal of Mathematical Physics, 35(1), 335-343. doi:10.1063/1.530774 <br>[36] Maluf, J. W., da Rocha-Neto, J. F., Toribio, T. M. L., and Castello-Branco, K. H. (2002). Energy and angular momentum of the gravitational field in the teleparallel geometry. Physical Review D, 65(12), 124001. doi:10.1103/PhysRevD.65.124001 <br>[37] Maluf, J. W. (2013). The teleparallel equivalent of general relativity. Annalen der Physik, 525(5), 339-357. doi:10.1002/andp.201200272 <br>[38] Maluf, J. W., and da Rocha-Neto, J. F. (1999). Static Bondi energy in the teleparallel equivalent of general relativity. Journal of Mathematical Physics, 40(3), 1490-1503. doi:10.1063/1.532817 <br>[39] Maluf, J. W., and Faria, F. F. (2004). On gravitational radiation and the energy flux of matter. Annalen der Physik, 13(10), 604-616. doi:10.1002/andp.200410097 <br>[40] Maluf, J. W., Andrade, V. C., and Steiner, J. R. (2007). Gravitational radiation of accelerated sources. International Journal of Modern Physics D, 16(05), 857-873. doi:10.48550/arXiv.gr-qc/0610102 <br>[41] Carneiro, F. L., Ulhoa, S. C., and Maluf, J. W. (2022). On the Black Hole Acceleration in the C-metric Spacetime. Gravitation and Cosmology, 28(4), 352-361. doi:10.1134/S0202289322040077 <br>[42] Hayashi, K., and Shirafuji, T. (1979). New general relativity. Physical Review D, 19(12), 3524. doi:10.1103/PhysRevD.19.3524 <br>[43] Formiga, J. B. (2018). The energy–momentum tensor of gravitational waves, wyman spacetime, and freely falling observers. Annalen der Physik, 530(12), 1800320. doi:10.1002/andp.201800320 <br>[44] Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. Macmillan. doi:10.1002/asna.19752960110 <br>[45] Maluf, J.W. (2004). Accelerated observers and gravitational radiation. arXiv: General Relativity and Quantum Cosmology. doi:10.48550/arXiv.gr-qc/0412055
Presenters
-
Mehmet B Ökten
Yildiz Technical University
Authors
-
Mehmet B Ökten
Yildiz Technical University