V: Alternative Theories of Gravity
ORAL · AAA02 · ID: 1395632
Presentations
-
Spacetimes between Einstein and Kaluza-Klein
ORAL
–
Publication: The spacetime between Einstein and Kaluza-Klein, Modern Physics Letters A, Vol. 35, No. 36, 2030020 (2020)
Presenters
-
Chris Vuille
Embry-Riddle Aeronautical University
Authors
-
Chris Vuille
Embry-Riddle Aeronautical University
-
-
On the Emission of the Gravitational Radiation by Light via Gravitational Redshift
ORAL
–
Publication: [1] Einstein, A. (1907). Uber das Relativit¨atsprinzip und die aus demselben gezogenen Folgerungen, Jahrb. d. ¨ Radioaktivit¨at u. Elektronik. IV, 454. <br>[2] Einstein, A. (1923). Die grundlage der allgemeinen relativit¨atstheorie. In Das Relativit¨atsprinzip (pp. 81-124). Vieweg+ Teubner Verlag, Wiesbaden. <br>[3] Hohensee, M. A., Estey, B., Monsalve, F., Kim, G., Kuan, P. C., Lan, S. Y., M¨uller, H. (2011, January). Gravitational redshift, equivalence principle, and matter waves. In Journal of Physics: Conference Series (Vol. 264, No. 1, p. 012009). IOP Publishing. doi:10.1088/1742-6596/264/1/012009 <br>[4] Pound, R. V., and Snider, J. L. (1965). Effect of gravity on gamma radiation. Physical Review, 140(3B), B788. doi:10.1103/PhysRev.140.B788 <br>[5] M¨uller, H., Peters, A., and Chu, S. (2010). A precision measurement of the gravitational redshift by the interference of matter waves. Nature, 463(7283), 926-929. doi:10.1038/nature08776 <br>[6] Eddington, A. S. (1923). The mathematical theory of relativity. The University Press. doi:10.1038/nature08776 <br>[7] Weinberg, S. (1972). Principles and Applications of the General Theory of Relativity: Gravitation and Cosmology. Wiley. <br>[8] Møller, C. (1972). The theory of relativity. <br>[9] Koks, D. (2020). The Uniformly Accelerated Frame as a Test Bed for Analysing the Gravitational Redshift. Universe, 7(1), 4. doi:10.3390/universe7010004 <br>[10] Gronke, M. B., Llinares, C., and Mota, D. F. (2014). Gravitational redshift profiles in the f (R) and symmetron models. Astronomy and Astrophysics, 562, A9. doi:10.1051/0004-6361/201322403 <br>[11] Feynman, R. P., Morinigo, F. B., Wagner, W. G., Hatfield, B., Preskill, J., and Thorne, K. S. (2018). Feynman lectures on gravitation. CRC Press. doi:10.1201/9780429502859 <br>[12] Ufrecht, C., Di Pumpo, F., Friedrich, A., Roura, A., Schubert, C., Schlippert, D., ... and Giese, E. (2020). Atom-interferometric test of the universality of gravitational redshift and free fall. Physical Review Research, 2(4), 043240. doi:10.1103/PhysRevResearch.2.043240 <br>[13] Zhao, H., Peacock, J. A., and Li, B. (2013). Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters. Physical Review D, 88(4), 043013. doi:10.1103/PhysRevD.88.043013 <br>[14] Farrugia, G., Said, J. L., and Ruggiero, M. L. (2016). Solar System tests in f (T) gravity. Physical Review D, 93(10), 104034. doi:10.1103/PhysRevD.93.104034 <br>[15] Einstein, A. (2005). N¨aherungsweise integration der feldgleichungen der gravitation. Albert Einstein: AkademieVortr¨age: Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914–1932, 99-108. <br>[16] Eddington, A. S. (1922). The propagation of gravitational waves. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 102(716), 268-282. <br>[17] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... and Cavalieri, R. (2016). Observation of gravitational waves from a binary black hole merger. Physical review letters, 116(6), 061102. doi:10.1103/PhysRevLett.116.061102 <br>[18] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... and Baiardi, L. C. (2016). GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 93(12), 122003. doi:10.1103/PhysRevD.93.122003 <br>[19] Taylor, J. H., and Weisberg, J. M. (1982). A new test of general relativity-Gravitational radiation and the binary pulsar PSR 1913+ 16. The Astrophysical Journal, 253, 908-920. doi:10.1086/159690 <br>[20] Abramovici, A., Althouse, W. E., Drever, R. W., G¨ursel, Y., Kawamura, S., Raab, F. J., ... and Zucker, M. E. (1992). LIGO: The laser interferometer gravitational-wave observatory. science, 256(5055), 325-333. doi:10.1126/science.256.5055.325 <br>[21] Weiss, R. (2018). LIGO and the discovery of gravitational waves, I: Nobel lecture, December 8, 2017. doi:10.1002/andp.201800349 <br>[22] Barish, B. C. (2018). Nobel Lecture: LIGO and gravitational waves II. Reviews of Modern Physics, 90(4), 040502. doi:10.1103/RevModPhys.90.040502 <br>[23] Thorne, K. S. (2018). Nobel Lecture: LIGO and gravitational waves III*. Reviews of Modern Physics, 90(4), 040503. doi:10.1103/RevModPhys.90.040503 7 <br>[24] Einstein, A. (1930). Auf die riemann-metrik und den fern-parallelismus gegr¨undete einheitliche feldtheorie. Mathematische Annalen, 102(1), 685-697. <br>[25] Møller, C. (1961). Further remarks on the localization of the energy in the general theory of relativity. Annals of Physics, 12(1), 118-133. doi:10.1016/0003-4916(61)90148-8 <br>[26] Møller, C. (1961). Tetrad fields and conservation laws in general relativity. Evidence for Gravitational Theories, 252. doi:10.1016/0003-4916(61)90148-8 <br>[27] Cho, Y. M. (1976). Einstein lagrangian as the translational Yang-Mills lagrangian. Physical Review D, 14(10), 2521. doi:10.1103/PhysRevD.14.2521 <br>[28] Cho, Y. M. (1976). Gauge theory of Poincar´e symmetry. Physical Review D, 14(12), 3335. doi:10.1103/PhysRevD.14.3335 <br>[29] Abedi, H., and Capozziello, S. (2018). Gravitational waves in modified teleparallel theories of gravity. The European Physical Journal C, 78(6), 1-9. doi:10.1140/epjc/s10052-018-5967-x <br>[30] Sharif, M., and Taj, S. (2010). Energy Contents of Gravitational Waves in Teleparallel Gravity. Modern Physics Letters A, 25(03), 221-232. doi:10.1142/S0217732310031488 <br>[31] De Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Gravitational energy-momentum density in teleparallel gravity. Physical Review Letters, 84(20), 4533. doi:10.1103/PhysRevLett.84.4533 <br>[32] Maluf, J. W. (2005). The gravitational energy-momentum tensor and the gravitational pressure. Annalen der Physik, 517(11-12), 723-732. doi:10.1002/andp.200510161 <br>[33] Maluf, J. W., Faria, F. F., and Castello-Branco, K. H. (2003). The gravitational energy–momentum flux. Classical and Quantum Gravity, 20(21), 4683. doi:10.1088/0264-9381/20/21/008 <br>[34] Maluf, J. W., and Ulhoa, S. C. (2008). The energy-momentum of plane-fronted gravitational waves in the teleparallel equivalent of GR. Physical Review D, 78(4), 047502. doi:10.1103/PhysRevD.78.069901 <br>[35] Maluf, J. W. (1994). Hamiltonian formulation of the teleparallel description of general relativity. Journal of Mathematical Physics, 35(1), 335-343. doi:10.1063/1.530774 <br>[36] Maluf, J. W., da Rocha-Neto, J. F., Toribio, T. M. L., and Castello-Branco, K. H. (2002). Energy and angular momentum of the gravitational field in the teleparallel geometry. Physical Review D, 65(12), 124001. doi:10.1103/PhysRevD.65.124001 <br>[37] Maluf, J. W. (2013). The teleparallel equivalent of general relativity. Annalen der Physik, 525(5), 339-357. doi:10.1002/andp.201200272 <br>[38] Maluf, J. W., and da Rocha-Neto, J. F. (1999). Static Bondi energy in the teleparallel equivalent of general relativity. Journal of Mathematical Physics, 40(3), 1490-1503. doi:10.1063/1.532817 <br>[39] Maluf, J. W., and Faria, F. F. (2004). On gravitational radiation and the energy flux of matter. Annalen der Physik, 13(10), 604-616. doi:10.1002/andp.200410097 <br>[40] Maluf, J. W., Andrade, V. C., and Steiner, J. R. (2007). Gravitational radiation of accelerated sources. International Journal of Modern Physics D, 16(05), 857-873. doi:10.48550/arXiv.gr-qc/0610102 <br>[41] Carneiro, F. L., Ulhoa, S. C., and Maluf, J. W. (2022). On the Black Hole Acceleration in the C-metric Spacetime. Gravitation and Cosmology, 28(4), 352-361. doi:10.1134/S0202289322040077 <br>[42] Hayashi, K., and Shirafuji, T. (1979). New general relativity. Physical Review D, 19(12), 3524. doi:10.1103/PhysRevD.19.3524 <br>[43] Formiga, J. B. (2018). The energy–momentum tensor of gravitational waves, wyman spacetime, and freely falling observers. Annalen der Physik, 530(12), 1800320. doi:10.1002/andp.201800320 <br>[44] Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. Macmillan. doi:10.1002/asna.19752960110 <br>[45] Maluf, J.W. (2004). Accelerated observers and gravitational radiation. arXiv: General Relativity and Quantum Cosmology. doi:10.48550/arXiv.gr-qc/0412055
Presenters
-
Mehmet B Ökten
Yildiz Technical University
Authors
-
Mehmet B Ökten
Yildiz Technical University
-
-
Compensator fields in dimensional reduction and compactification without truncation — Part III: Einstein Gravity
ORAL
–
Presenters
-
Michael B Schulz
Bryn Mawr College
Authors
-
Michael B Schulz
Bryn Mawr College
-
-
Violation of the Equivalence Principle for some Macroscopic Quantum Bodies
ORAL
–
Publication: A.G. Lebed, Editor, Breakdown of Einstein's Equivalence Principle (World Scientific, Singapore, 2023).
Presenters
-
Andrei G Lebed
University of Arizona
Authors
-
Andrei G Lebed
University of Arizona
-
-
Concept of quantum space-time structure- Initial stage (Basic framework)
ORAL
–
Presenters
-
Aman Yadav
Delhi Technological University
Authors
-
Aman Yadav
Delhi Technological University
-
-
Gravitational wave energy-momentum tensor and radiated power in a strongly curved background
ORAL
–
Presenters
-
Yuchen Du
U. Virginia
Authors
-
Diana Vaman
University of Virginia
-
Yuchen Du
U. Virginia
-