Dirac observables in the 4-dimensional phase space of Ashtekar's variables and spherically symmetric loop quantum black holes
ORAL
Abstract
We study a proposal put forward recently by Bodendorfer, Mele and Munch and Garcia-Quismondo and Marugan, in which the two polymerization parameters of spherically symmetric black hole spacetimes are the Dirac observables of the four-dimensional Ashtekar's variables. In this model, black and white hole horizons in general exist and naturally divide the spacetime into the external and internal regions. In the external region, the spacetime can be made asymptotically flat by properly choosing the dependence of the two polymerization parameters on the Ashtekar variables. Then, we find that the asymptotical behavior of the spacetime is universal, and, to the leading order, the curvature invariants are independent of the mass parameter m. For example, the Kretschmann scalar approaches zero asymptotically. In the internal region, all the physical quantities are finite, and the Schwarzschild black hole singularity is replaced by a transition surface whose radius is always finite and non-zero. The quantum gravitational effects are negligible near the black hole horizon for very massive black holes. However, the behavior of the spacetime across the transition surface is significantly different from all loop quantum black holes studied so far. In particular, the location of the maximum amplitude of the curvature scalars is displaced from the transition surface and depends on $m$, so does the maximum amplitude. In addition, the radius of the white hole is much smaller than that of the black hole, and its exact value sensitively depends on m, too.
–
Publication: https://arxiv.org/abs/2208.10562
Presenters
-
Geeth Chandra Ongole
Baylor University
Authors
-
Geeth Chandra Ongole
Baylor University
-
Hongchao Zhang
Zhejiang University of Technology
-
Tao Zhu
Zhejiang University of Technology
-
Anzhong Wang
Baylor University
-
Bin Wang
Shanghai Jiao Tong University