APS Logo

Implementation of microscale ZnO with controlled morphologies to study the influence of surface polarity on ZnO antibacterial action

POSTER

Abstract

Antimicrobial properties of microscale ZnO have been well documented, however a clear model of this action has not been identified. Within the hypothesis that one of the major mechanisms causing ZnO antibacterial properties is rooted in the interactions between the surface of ZnO crystals and the cell's surface, it is reasonable to assume that ZnO surface polarity may affect its antibacterial properties. We employed hydrothermal growth method to controllably synthesize ZnO particles with different relative abundances of polar vs. non-polar surfaces and subsequently investigated antibacterial assays with these microcrystalline samples.

Authors

  • Mark Hattarki

    TABS high school

  • John Reeks

    Physics Department, TCU

  • Eric Davis

    University of Texas at Arlington, Sultan Qaboos University, UTA HEP group, Department of Integrated Bio \& Nano Systems, University of Houston, Houston, TX 77204, USA, Department of Electrical and Computer Engineering, Nano Tech Center, Texas Tech University, University of Michigan, University of Waerloo, Canada, Texas Tech University, Dept of Mechanical Eng, TTU; Dept. of Physics and Astronomy, TTU, Dept of Cell Biology and Biochemistry, TTU Health Sci Ctr, Dept of Physics and Astronomy, TTU, Dept of Mechanical Engineering, TTU, Dept of Physics and Astronomy, TTU; Sch of Health and Sci, Purdue Univ, Dept of Mathematical and Systems Engineering, Shizuoka Univ, Department of Physics, University of Texas at Dallas, Richardson, TX 75080, Department of Physics, University of Texas at Dallas, Richardson, TX 75080., LeTourneau University, None, University of Waterloo, Canada, Texas Tech Univ, Trinity University, the University of Texas at Dallas, Texas Tech University, Lubbock, TX, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, University of Dallas, Liverpool John Moores University, University Of Houston, Biolog Department, TCU, Home Schooled high school student, Los Alamos National Laboratory

  • Eric Davis

    University of Texas at Arlington, Sultan Qaboos University, UTA HEP group, Department of Integrated Bio \& Nano Systems, University of Houston, Houston, TX 77204, USA, Department of Electrical and Computer Engineering, Nano Tech Center, Texas Tech University, University of Michigan, University of Waerloo, Canada, Texas Tech University, Dept of Mechanical Eng, TTU; Dept. of Physics and Astronomy, TTU, Dept of Cell Biology and Biochemistry, TTU Health Sci Ctr, Dept of Physics and Astronomy, TTU, Dept of Mechanical Engineering, TTU, Dept of Physics and Astronomy, TTU; Sch of Health and Sci, Purdue Univ, Dept of Mathematical and Systems Engineering, Shizuoka Univ, Department of Physics, University of Texas at Dallas, Richardson, TX 75080, Department of Physics, University of Texas at Dallas, Richardson, TX 75080., LeTourneau University, None, University of Waterloo, Canada, Texas Tech Univ, Trinity University, the University of Texas at Dallas, Texas Tech University, Lubbock, TX, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, University of Dallas, Liverpool John Moores University, University Of Houston, Biolog Department, TCU, Home Schooled high school student, Los Alamos National Laboratory

  • Eric Davis

    University of Texas at Arlington, Sultan Qaboos University, UTA HEP group, Department of Integrated Bio \& Nano Systems, University of Houston, Houston, TX 77204, USA, Department of Electrical and Computer Engineering, Nano Tech Center, Texas Tech University, University of Michigan, University of Waerloo, Canada, Texas Tech University, Dept of Mechanical Eng, TTU; Dept. of Physics and Astronomy, TTU, Dept of Cell Biology and Biochemistry, TTU Health Sci Ctr, Dept of Physics and Astronomy, TTU, Dept of Mechanical Engineering, TTU, Dept of Physics and Astronomy, TTU; Sch of Health and Sci, Purdue Univ, Dept of Mathematical and Systems Engineering, Shizuoka Univ, Department of Physics, University of Texas at Dallas, Richardson, TX 75080, Department of Physics, University of Texas at Dallas, Richardson, TX 75080., LeTourneau University, None, University of Waterloo, Canada, Texas Tech Univ, Trinity University, the University of Texas at Dallas, Texas Tech University, Lubbock, TX, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, University of Dallas, Liverpool John Moores University, University Of Houston, Biolog Department, TCU, Home Schooled high school student, Los Alamos National Laboratory

  • Eric Davis

    University of Texas at Arlington, Sultan Qaboos University, UTA HEP group, Department of Integrated Bio \& Nano Systems, University of Houston, Houston, TX 77204, USA, Department of Electrical and Computer Engineering, Nano Tech Center, Texas Tech University, University of Michigan, University of Waerloo, Canada, Texas Tech University, Dept of Mechanical Eng, TTU; Dept. of Physics and Astronomy, TTU, Dept of Cell Biology and Biochemistry, TTU Health Sci Ctr, Dept of Physics and Astronomy, TTU, Dept of Mechanical Engineering, TTU, Dept of Physics and Astronomy, TTU; Sch of Health and Sci, Purdue Univ, Dept of Mathematical and Systems Engineering, Shizuoka Univ, Department of Physics, University of Texas at Dallas, Richardson, TX 75080, Department of Physics, University of Texas at Dallas, Richardson, TX 75080., LeTourneau University, None, University of Waterloo, Canada, Texas Tech Univ, Trinity University, the University of Texas at Dallas, Texas Tech University, Lubbock, TX, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, University of Dallas, Liverpool John Moores University, University Of Houston, Biolog Department, TCU, Home Schooled high school student, Los Alamos National Laboratory

  • Yuri Strzhemechny

    Department of Physics and Astronomy, TCU