Explorations into the Schrodinger Uncertainty Relation

POSTER

Abstract

Are there situations that find the Heisenberg Uncertainty Relation lacking? We use harmonic oscillators, free particle wave packets, square wells, and spin to demonstrate the need for the unsung Schr\"{o}dinger Uncertainty Relation. Schr\"{o}dinger expanded upon Heisenberg's original informal relation $ \Delta x\Delta p \approx h $ and Robertson's formal derivation of $\Delta A \Delta B\geq \frac{1}{2}|\langle[\hat{A},\hat{B}]\rangle|$ to find $\Delta A \Delta B \geq \sqrt{\Big(\frac{1}{2}\langle\{\hat{A},\hat{B}\}\rangle - \langle \hat{A} \rangle\langle \hat{B}\rangle\Big)^{2}+ \Big|\frac{1}{2}\langle[\hat{A},\hat{B}]\rangle\Big|^{2}}$. We will highlight the importance of the contributions that eluded Heisenberg. These contributions have both classical and quantum realizations.

Authors

  • Nathan Steiger

    Brigham Young University

  • Jean-Francois Van Huele

    Brigham Young University