Chaotic Backward Volume Spin Waves

POSTER

Abstract

Chaotic backward volume spin waves, excited by three-wave interactions, have been investigated. The waves were produced in an yttrium-iron-garnet film in an active feedback ring. Previous experiments have focused on the three-wave interaction of surface waves and backward volume waves produced in a similar system. In contrast to the previous work, this experiment focused on the detailed study of the three-wave processes of backward volume spin waves only. Measurements on the three-wave process threshold were first carried out for different magnetic fields and frequencies. After that, measurements were made for a set of ring gain levels in order to study the development of chaotic behavior in the feedback ring in a systematic way. Time profiles and frequency spectra of the generated signals were recorded. It was observed that in the formation of the chaotic signals, the ring eigen-modes played an important role. It was these modes that were becoming parametrically unstable against three-wave decay processes as the ring gain increased. Chaotic behavior existed over a range of ring gain levels. With a ring gain between 1.5 and 3 dB, it was possible to calculate the correlation dimension of the chaotic signal. As the ring gain increased from 1.5 dB to 3 dB, the correlation dimension increased from 4.7 to 12.5. This experiment demonstrates a new approach to construct a microwave chaotic oscillator as well as a possible microwave power limiter.

Authors

  • Shufang Su

    Iowa State University, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, University of Arizona, Sandia National Laboratories, Physics Department, Texas Tech University, Lubbock, TX 79409-1051, Northwestern University, Texas Tech University, University of Utah Department of Physics, University of Toulouse-UPS, IRSAMC, Toulouse, France, University of Arizona, Department of Physics, National Institute of Advanced Industrial Science and Technology, Texas A\&M University, Midwest Proton Radiotherapy Institute, Birdville ISD, Universidad de Colima, Universidad de Buenos Aires, Brigham Young University, UT Atlington, MV Systems, Colorado State University, St. Petersburg Electrotechnical University, New Mexico State University, Texas State Univ., CAMD/LSU, Texas Christian University, Fort Worth, TX, North Side High School, Fort Worth, TX, Nitronex Corporation, Arizona State University, Angelo State University Department of Physics, Texas Tech University Deptarment of Electrical Engineering

  • Shufang Su

    Iowa State University, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, University of Arizona, Sandia National Laboratories, Physics Department, Texas Tech University, Lubbock, TX 79409-1051, Northwestern University, Texas Tech University, University of Utah Department of Physics, University of Toulouse-UPS, IRSAMC, Toulouse, France, University of Arizona, Department of Physics, National Institute of Advanced Industrial Science and Technology, Texas A\&M University, Midwest Proton Radiotherapy Institute, Birdville ISD, Universidad de Colima, Universidad de Buenos Aires, Brigham Young University, UT Atlington, MV Systems, Colorado State University, St. Petersburg Electrotechnical University, New Mexico State University, Texas State Univ., CAMD/LSU, Texas Christian University, Fort Worth, TX, North Side High School, Fort Worth, TX, Nitronex Corporation, Arizona State University, Angelo State University Department of Physics, Texas Tech University Deptarment of Electrical Engineering

  • Shufang Su

    Iowa State University, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, University of Arizona, Sandia National Laboratories, Physics Department, Texas Tech University, Lubbock, TX 79409-1051, Northwestern University, Texas Tech University, University of Utah Department of Physics, University of Toulouse-UPS, IRSAMC, Toulouse, France, University of Arizona, Department of Physics, National Institute of Advanced Industrial Science and Technology, Texas A\&M University, Midwest Proton Radiotherapy Institute, Birdville ISD, Universidad de Colima, Universidad de Buenos Aires, Brigham Young University, UT Atlington, MV Systems, Colorado State University, St. Petersburg Electrotechnical University, New Mexico State University, Texas State Univ., CAMD/LSU, Texas Christian University, Fort Worth, TX, North Side High School, Fort Worth, TX, Nitronex Corporation, Arizona State University, Angelo State University Department of Physics, Texas Tech University Deptarment of Electrical Engineering

  • Shufang Su

    Iowa State University, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, University of Arizona, Sandia National Laboratories, Physics Department, Texas Tech University, Lubbock, TX 79409-1051, Northwestern University, Texas Tech University, University of Utah Department of Physics, University of Toulouse-UPS, IRSAMC, Toulouse, France, University of Arizona, Department of Physics, National Institute of Advanced Industrial Science and Technology, Texas A\&M University, Midwest Proton Radiotherapy Institute, Birdville ISD, Universidad de Colima, Universidad de Buenos Aires, Brigham Young University, UT Atlington, MV Systems, Colorado State University, St. Petersburg Electrotechnical University, New Mexico State University, Texas State Univ., CAMD/LSU, Texas Christian University, Fort Worth, TX, North Side High School, Fort Worth, TX, Nitronex Corporation, Arizona State University, Angelo State University Department of Physics, Texas Tech University Deptarment of Electrical Engineering

  • Shufang Su

    Iowa State University, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, University of Arizona, Sandia National Laboratories, Physics Department, Texas Tech University, Lubbock, TX 79409-1051, Northwestern University, Texas Tech University, University of Utah Department of Physics, University of Toulouse-UPS, IRSAMC, Toulouse, France, University of Arizona, Department of Physics, National Institute of Advanced Industrial Science and Technology, Texas A\&M University, Midwest Proton Radiotherapy Institute, Birdville ISD, Universidad de Colima, Universidad de Buenos Aires, Brigham Young University, UT Atlington, MV Systems, Colorado State University, St. Petersburg Electrotechnical University, New Mexico State University, Texas State Univ., CAMD/LSU, Texas Christian University, Fort Worth, TX, North Side High School, Fort Worth, TX, Nitronex Corporation, Arizona State University, Angelo State University Department of Physics, Texas Tech University Deptarment of Electrical Engineering