Knowledge Distillation-Assisted Lightweight Neural Networks for Superconducting Multi-Qubit Readout
ORAL
Abstract
–
Publication: B. Lienhard, A. Veps ̈al ̈ainen, L. C. Govia, C. R. Hoffer, J. Y. Qiu, D. Rist`e, M. Ware, D. Kim, R. Winik, A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill, T. A. Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson, and W. D. Oliver, "Deep-neural-network discrimination of multiplexed superconducting-qubit states," Phys. Rev. Appl., vol. 17, p. 014024, Jan 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.17.014024<br>S. Maurya, C. N. Mude, W. D. Oliver, B. Lienhard, and S. Tannu, "Scaling qubit readout with hardware efficient machine learning<br>architectures," in Proceedings of the 50th Annual International Symposium on Computer Architecture, ser. ISCA '23. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3579371.3589042
Presenters
-
Xiaorang Guo
Technical University of Munich
Authors
-
Xiaorang Guo
Technical University of Munich
-
Dai Liu
Technical University of Munich
-
Benjamin Lienhard
Princeton University
-
Martin Schulz
Technical University of Munich