Knowledge Distillation-Assisted Lightweight Neural Networks for Superconducting Multi-Qubit Readout
ORAL
Abstract
–
Publication: B. Lienhard, A. Veps ̈al ̈ainen, L. C. Govia, C. R. Hoffer, J. Y. Qiu, D. Rist`e, M. Ware, D. Kim, R. Winik, A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill, T. A. Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson, and W. D. Oliver, "Deep-neural-network discrimination of multiplexed superconducting-qubit states," Phys. Rev. Appl., vol. 17, p. 014024, Jan 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.17.014024
S. Maurya, C. N. Mude, W. D. Oliver, B. Lienhard, and S. Tannu, "Scaling qubit readout with hardware efficient machine learning
architectures," in Proceedings of the 50th Annual International Symposium on Computer Architecture, ser. ISCA '23. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3579371.3589042
Presenters
-
Xiaorang Guo
Technical University of Munich
Authors
-
Xiaorang Guo
Technical University of Munich
-
Dai Liu
Technical University of Munich
-
Benjamin Lienhard
Princeton University
-
Martin Schulz
Technical University of Munich