APS Logo

Oral: Electric-field-induced switching of antiferromagnetic states in single-domain multiferroic BiFeO<sub>3</sub>

ORAL

Abstract

Computers and electronic devices are vital, but the power demands of Internet of Things (IoT) and artificial intelligence (AI) require new hardware solutions. With Moore's law approaching its limit, advancing beyond traditional CMOS transistors is essential.1 A promising approach is encoding information through collective order parameters in innovative materials, such as using electric-field control of magnetism via multiferroics. In 2019, Intel proposed magnetoelectric spin-orbit (MESO) logic, embedding BiFeO3 as a magnetoelectric medium, to overcome CMOS limitations for low-power and scalable AI hardware.2 BiFeO3 is one of the very few room-temperature magnetoelectric multiferroics, with its long-range antiferromagnetic spin cycloid coupled to its ferroelectric polarization. However, it exhibits a complex antiferromagnetic landscape in bulk single crystals3 or in thin films4 due to their multiple ferroelectric variants.

In this work, we simplified the multiferroic landscape in epitaxial BiFeO3 thin films grown by pulsed laser deposition. We employed epitaxial engineering strategies including anisotropic strain5 and substrate vicinality approaches to stabilize single-domain ferroelectric (P) as well as spin cycloid propagation direction (k).6 Additionally, we were able to reversibly and deterministically manipulate the antiferromagnetic structure of BiFeO3 by electric field between cycloidal and noncollinear G-type antiferromagnetic states.7 This heterostructures introduce convenient platform for magnetoelectric-based devices, advancing the development of MESO technology towards practical application.

Publication: [1] G. E. Moore: Electronics 38, 8 (1965).<br>[2] S. Manipatruni, et al.: Nat. Phys. 14, 338 (2018).<br>[3] A. Finco, et al.: Phys. Rev. Lett. 18, 187201 (2022).<br>[4] A. Haykal, et al.: Nat. Commun. 11, 1704 (2020) <br>[5] P. Dufour#, A. Abdelsamie#, et al.: Nano Lett. 23, 9073 (2023). <br>[6] A. Abdelsamie, et al.: Appl. Phys. Lett. 24, 242902 (2024).<br>[7] A. Abdelsamie, et al.: In preparation (2024).

Presenters

  • Amr Abdelsamie

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

Authors

  • Amr Abdelsamie

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Arthur Chaudron

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Noela Rezi

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Pauline Dufour

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Aurore Finco

    Laboratoire Charles Coulomb, Université de Montpellier and CNRS

  • Nicolas Jaouen

    Synchrotron SOLEIL

  • Michel Viret

    SPEC, CEA, CNRS, Université Paris-Saclay

  • Karim Bouzehouane

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Vincent Jacques

    Laboratoire Charles Coulomb, Université de Montpellier and CNRS

  • Jean-Yves Chauleau

    SPEC, CEA, CNRS, Université Paris-Saclay

  • Stephane FUSIL

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay

  • Vincent Garcia

    Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay