Generative Models and Machine Learning in Chemical Physics II
FOCUS · MAR-T68 · ID: 3087957
Presentations
-
Revisiting collective-variable guided sampling with normalizing flows
ORAL · Invited
–
Publication: Tamagnone, Samuel, Alessandro Laio, and Marylou Gabrié. "Coarse-Grained Molecular Dynamics with Normalizing Flows." Journal of Chemical Theory and Computation, September 2, 2024. https://doi.org/10.1021/acs.jctc.4c00700.<br><br>Schönle, Christoph, Marylou Gabrié, Tony Lelièvre, and Gabriel Stoltz. "Sampling Metastable Systems Using Collective Variables and Jarzynski-Crooks Paths." arXiv, May 28, 2024. https://doi.org/10.48550/arXiv.2405.18160.
Presenters
-
Marylou Gabrié
École Normale Supérieure
Authors
-
Marylou Gabrié
École Normale Supérieure
-
Alessandro Laio
SISSA, SISSA, Trieste, Italy
-
Tony Lelièvre
ENPC
-
Christoph Schönle
École Polytechnique
-
Gabriel Stoltz
ENPC
-
Samuel Tamagnone
SISSA
-
-
Aditi Krishnapriyan
ORAL · Invited
–
Presenters
-
Aditi Krishnapriyan
University of California, Berkeley
Authors
-
Aditi Krishnapriyan
University of California, Berkeley
-
-
Size-transferable prediction of excited state properties for molecular assemblies with machine-learned exciton model
ORAL
–
Publication: F. Ren, X. Chen, F. Liu, Size-transferable prediction of excited state properties for molecular assemblies with machine-learned exciton model. ChemRxiv Preprint, DOI: 10.26434/chemrxiv-2024-x5ljd
Presenters
-
Fang Liu
Emory University
Authors
-
Fang Liu
Emory University
-
Fangning Ren
Emory University
-
Xu Chen
Emory University
-
-
Nonequilibrium force matching for alchemical free energy estimation
ORAL
–
Publication: 1. "Fast alchemical free energy estimation through nonequilibrium force matching," by Jorge L. Rosa-Raíces and David T. Limmer, planned article, in preparation<br>2. "Variational time reversal for free-energy estimation in nonequilibrium steady states," by Jorge L. Rosa-Raíces and David T. Limmer, Physical Review E 110, 024120 (2024).
Presenters
-
Jorge L Rosa-Raíces
Department of Chemistry, University of California, Berkeley
Authors
-
Jorge L Rosa-Raíces
Department of Chemistry, University of California, Berkeley
-
David T Limmer
Department of Chemistry, University of California, Berkeley, University of California, Berkeley
-
-
Accelerating materials discovery pipelines: Incorporating multimodal approaches from neutron scattering data to deep learning and high-accuracy first principles calculations to improve credible predictions
ORAL
–
Presenters
-
Ada Sedova
Oak Ridge National Laboratory
Authors
-
Ada Sedova
Oak Ridge National Laboratory
-
Santanu Roy
Oak Ridge National Laboratory
-
Paul Kent
Oak Ridge National Laboratory
-
Matthew R Ryder
Oak Ridge National Laboratory
-
Craig Bridges
Oak Ridge National Laboratory
-
Mark Coletti
Oak Ridge National Laboratory
-
Christian Engelmann
Oak Ridge National Laboratory
-
Mathieu Taillefumier
ETH Zurich
-
-
Learning to shine: Neuroevolution for optical control of phase transitions
ORAL
–
Presenters
-
Sraddha Agrawal
Argonne National Laboratory
Authors
-
Sraddha Agrawal
Argonne National Laboratory
-
Stephen Whitelam
Lawrence Berkeley National Laboratory
-
Pierre Darancet
Argonne National Laboratory
-
-
Spatio-Temporal Characterization of Water Diffusion Anomalies in Saline Solutions Using Machine Learning Force Field
ORAL
–
Publication: Spatio-Temporal Characterization of Water Diffusion Anomalies in Saline Solutions Using Machine Learning Force Field<br>( https://chemrxiv.org/engage/chemrxiv/article-details/6620bbf491aefa6ce1ccfdbc )
Presenters
-
Ji Woong Yu
Korea Institute for Advanced Study
Authors
-
Ji Woong Yu
Korea Institute for Advanced Study
-
-
Advancing Density Functional Theory for Chemically Accurate Reactive and Non-Reactive Condensed Phase Simulations with Machine Learning
ORAL
–
Publication: [1] Lambros, E.; Dasgupta, S.; Palos, E.; Swee, S.; Hu, J.; Paesani, F. General Many-Body Framework for Data-Driven Potentials With Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J. Chem. Theory. Comput. 2021, 17, 5635–5650.<br>[2] Dasgupta, S.; Lambros, E.; Perdew, J. P.; Paesani, F. Elevating Density Functional Theory to Chemical Accuracy for Water Simulations Through a Density-Corrected Many-Body Formalism. Nat. Commun. 2021, 12, 6359.<br>[3] Dasgupta, S.; Shahi, C.; Bhetwal, P.; Perdew, J. P.; Paesani, F. How Good Is the Density-Corrected Scan Functional for Neutral and Ionic Aqueous Systems and What Is So Right About the Hartree–Fock Density? J. Chem. Theory. Comput. 2022, 18, 4745–4761.<br>[4] Dasgupta, S.; Cassone, G.; Paesani, F. Nuclear Quantum Effects and the Grotthuss Mechanism Dictate the pH of Liquid Water. ChemRxiv 2024
Presenters
-
Saswata Dasgupta
UC San Diego
Authors
-
Saswata Dasgupta
UC San Diego
-
Francesco Paesani
University of California, San Diego
-
-
Machine learning: an alternative or aid to quantum calculations? Insights from effective Hamiltonians
ORAL
–
Publication: Cignoni, E., Suman, D., Nigam, J., Cupellini, L., Mennucci, B., & Ceriotti, M. (2024). Electronic Excited States from Physically Constrained Machine Learning. ACS Central Science, 10(3), 637-648.
Presenters
-
Jigyasa Nigam
Massachusetts Institute of Technology
Authors
-
Jigyasa Nigam
Massachusetts Institute of Technology
-
Michele Ceriotti
École Polytechnique Fédérale de Lausanne
-
Paolo Pegolo
EPFL
-
Divya Suman
EPFL
-
Edoardo Cignoni
Universit`a di Pisa
-
Hanna Türk
EPFL
-
-
Fused Convolution and Attention Graph Neural Networks (FCAtGNN) Accelerates Eliashberg Spectral Function Predictions for Superconductors
ORAL
–
Presenters
-
Mohammed S Al-Fahdi
University of South Carolina
Authors
-
Mohammed S Al-Fahdi
University of South Carolina
-
Ming Hu
University of South Carolina
-
-
Open Materials Generation using Stochastic Interpolant to Discover New Superconductors
ORAL
–
Presenters
-
Pawan Prakash
University of Florida
Authors
-
Pawan Prakash
University of Florida
-
Eric Fuemmeler
University of Minnesota
-
Amit Gupta
University of Minnesota
-
Philipp Hoellmer
New York University, New York University (NYU)
-
Thomas Egg
New York University, New York University (NYU)
-
Maya M Martirossyan
New York University, Cornell University, Department of Materials Science and Engineering, Cornell University, Ithaca, NY; Center for Soft Matter Research, Department of Physics, New York University, New York, NY
-
Gregory Wolfe
New York University, New York University (NYU)
-
Adrian E Roitberg
University of Florida
-
George Karypis
University of Minnesota
-
Mingjie Liu
University of Florida
-
Mark K Transtrum
Brigham Young University
-
Ellad B Tadmor
University of Minnesota
-
Stefano Martiniani
New York University (NYU)
-
Richard G Hennig
University of Florida, Department of Materials Science and Engineering, University of Florida
-