APS Logo

Generative Models and Machine Learning in Chemical Physics II

FOCUS · MAR-T68 · ID: 3087957







Presentations

  • Revisiting collective-variable guided sampling with normalizing flows

    ORAL · Invited

    Publication: Tamagnone, Samuel, Alessandro Laio, and Marylou Gabrié. "Coarse-Grained Molecular Dynamics with Normalizing Flows." Journal of Chemical Theory and Computation, September 2, 2024. https://doi.org/10.1021/acs.jctc.4c00700.<br><br>Schönle, Christoph, Marylou Gabrié, Tony Lelièvre, and Gabriel Stoltz. "Sampling Metastable Systems Using Collective Variables and Jarzynski-Crooks Paths." arXiv, May 28, 2024. https://doi.org/10.48550/arXiv.2405.18160.

    Presenters

    • Marylou Gabrié

      École Normale Supérieure

    Authors

    • Marylou Gabrié

      École Normale Supérieure

    • Alessandro Laio

      SISSA, SISSA, Trieste, Italy

    • Tony Lelièvre

      ENPC

    • Christoph Schönle

      École Polytechnique

    • Gabriel Stoltz

      ENPC

    • Samuel Tamagnone

      SISSA

    View abstract →

  • Aditi Krishnapriyan

    ORAL · Invited

    Presenters

    • Aditi Krishnapriyan

      University of California, Berkeley

    Authors

    • Aditi Krishnapriyan

      University of California, Berkeley

    View abstract →

  • Size-transferable prediction of excited state properties for molecular assemblies with machine-learned exciton model

    ORAL

    Publication: F. Ren, X. Chen, F. Liu, Size-transferable prediction of excited state properties for molecular assemblies with machine-learned exciton model. ChemRxiv Preprint, DOI: 10.26434/chemrxiv-2024-x5ljd

    Presenters

    • Fang Liu

      Emory University

    Authors

    • Fang Liu

      Emory University

    • Fangning Ren

      Emory University

    • Xu Chen

      Emory University

    View abstract →

  • Nonequilibrium force matching for alchemical free energy estimation

    ORAL

    Publication: 1. "Fast alchemical free energy estimation through nonequilibrium force matching," by Jorge L. Rosa-Raíces and David T. Limmer, planned article, in preparation<br>2. "Variational time reversal for free-energy estimation in nonequilibrium steady states," by Jorge L. Rosa-Raíces and David T. Limmer, Physical Review E 110, 024120 (2024).

    Presenters

    • Jorge L Rosa-Raíces

      Department of Chemistry, University of California, Berkeley

    Authors

    • Jorge L Rosa-Raíces

      Department of Chemistry, University of California, Berkeley

    • David T Limmer

      Department of Chemistry, University of California, Berkeley, University of California, Berkeley

    View abstract →

  • Accelerating materials discovery pipelines: Incorporating multimodal approaches from neutron scattering data to deep learning and high-accuracy first principles calculations to improve credible predictions

    ORAL

    Presenters

    • Ada Sedova

      Oak Ridge National Laboratory

    Authors

    • Ada Sedova

      Oak Ridge National Laboratory

    • Santanu Roy

      Oak Ridge National Laboratory

    • Paul Kent

      Oak Ridge National Laboratory

    • Matthew R Ryder

      Oak Ridge National Laboratory

    • Craig Bridges

      Oak Ridge National Laboratory

    • Mark Coletti

      Oak Ridge National Laboratory

    • Christian Engelmann

      Oak Ridge National Laboratory

    • Mathieu Taillefumier

      ETH Zurich

    View abstract →

  • Spatio-Temporal Characterization of Water Diffusion Anomalies in Saline Solutions Using Machine Learning Force Field

    ORAL

    Publication: Spatio-Temporal Characterization of Water Diffusion Anomalies in Saline Solutions Using Machine Learning Force Field<br>( https://chemrxiv.org/engage/chemrxiv/article-details/6620bbf491aefa6ce1ccfdbc )

    Presenters

    • Ji Woong Yu

      Korea Institute for Advanced Study

    Authors

    • Ji Woong Yu

      Korea Institute for Advanced Study

    View abstract →

  • Advancing Density Functional Theory for Chemically Accurate Reactive and Non-Reactive Condensed Phase Simulations with Machine Learning

    ORAL

    Publication: [1] Lambros, E.; Dasgupta, S.; Palos, E.; Swee, S.; Hu, J.; Paesani, F. General Many-Body Framework for Data-Driven Potentials With Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J. Chem. Theory. Comput. 2021, 17, 5635–5650.<br>[2] Dasgupta, S.; Lambros, E.; Perdew, J. P.; Paesani, F. Elevating Density Functional Theory to Chemical Accuracy for Water Simulations Through a Density-Corrected Many-Body Formalism. Nat. Commun. 2021, 12, 6359.<br>[3] Dasgupta, S.; Shahi, C.; Bhetwal, P.; Perdew, J. P.; Paesani, F. How Good Is the Density-Corrected Scan Functional for Neutral and Ionic Aqueous Systems and What Is So Right About the Hartree–Fock Density? J. Chem. Theory. Comput. 2022, 18, 4745–4761.<br>[4] Dasgupta, S.; Cassone, G.; Paesani, F. Nuclear Quantum Effects and the Grotthuss Mechanism Dictate the pH of Liquid Water. ChemRxiv 2024

    Presenters

    • Saswata Dasgupta

      UC San Diego

    Authors

    • Saswata Dasgupta

      UC San Diego

    • Francesco Paesani

      University of California, San Diego

    View abstract →

  • Machine learning: an alternative or aid to quantum calculations? Insights from effective Hamiltonians

    ORAL

    Publication: Cignoni, E., Suman, D., Nigam, J., Cupellini, L., Mennucci, B., & Ceriotti, M. (2024). Electronic Excited States from Physically Constrained Machine Learning. ACS Central Science, 10(3), 637-648.

    Presenters

    • Jigyasa Nigam

      Massachusetts Institute of Technology

    Authors

    • Jigyasa Nigam

      Massachusetts Institute of Technology

    • Michele Ceriotti

      École Polytechnique Fédérale de Lausanne

    • Paolo Pegolo

      EPFL

    • Divya Suman

      EPFL

    • Edoardo Cignoni

      Universit`a di Pisa

    • Hanna Türk

      EPFL

    View abstract →

  • Open Materials Generation using Stochastic Interpolant to Discover New Superconductors

    ORAL

    Presenters

    • Pawan Prakash

      University of Florida

    Authors

    • Pawan Prakash

      University of Florida

    • Eric Fuemmeler

      University of Minnesota

    • Amit Gupta

      University of Minnesota

    • Philipp Hoellmer

      New York University, New York University (NYU)

    • Thomas Egg

      New York University, New York University (NYU)

    • Maya M Martirossyan

      New York University, Cornell University, Department of Materials Science and Engineering, Cornell University, Ithaca, NY; Center for Soft Matter Research, Department of Physics, New York University, New York, NY

    • Gregory Wolfe

      New York University, New York University (NYU)

    • Adrian E Roitberg

      University of Florida

    • George Karypis

      University of Minnesota

    • Mingjie Liu

      University of Florida

    • Mark K Transtrum

      Brigham Young University

    • Ellad B Tadmor

      University of Minnesota

    • Stefano Martiniani

      New York University (NYU)

    • Richard G Hennig

      University of Florida, Department of Materials Science and Engineering, University of Florida

    View abstract →