Domain Reconstruction of Twisted Bilayer and Heterobilayer transition metal (di-)chalcogenides via large-scale DFT and Machine Learned Interatomic Potentials
ORAL
Abstract
[1] S. Carr et al, Phys. Rev. B 95, 075420 (2017). [2] I. Batatia et al, Adv Neural Inf Process Syst (2022).
–
Publication: 1) S. J. Magorrian and N. D. M. Hine, Strain-dependent one-dimensional confinement channels in twisted bilayer 1T'-WTe2, Phys Rev B 110, 045410 (2024).
2) S. J. Magorrian, A. Siddiqui and N. D. M. Hine, Strong atomic reconstruction in twisted bilayers of highly flexible InSe: Machine-Learned Interatomic Potential and continuum model approaches, under review (2024).
3) A. Siddiqui, C. Xu, S. J. Magorrian, and N. D. M. Hine, Understanding Domain Reconstruction of Twisted bilayer and heterobilayer Transition Metal Dichalcogenides through Machine Learned Interatomic Potential, in preparation (2024).
Presenters
-
Nicholas D Hine
University of Warwick
Authors
-
Nicholas D Hine
University of Warwick
-
Anas Siddiqui
University of Warwick
-
Samuel J Magorrian
University of Warwick
-
Chung Xu
University of Warwick