Room-Temperature Perpendicular Magnetization and Anomalous Hall Effect in Polycrystalline Antiferromagnetic γ-FeMn Films
ORAL
Abstract
Theoretical works [3-4] predict topological magnetism and transport in FCC antiferromagnets with scalar spin chirality from the (111) orientation and uniaxial strain. The key to our (111) oriented FCC FeMn is an ultrathin Cu seed layer. We observe perpendicular magnetization superficially reminiscent of topological antiferromagnets with a uniaxial strain present in the FCC FeMn ~1.4% [5]. Our findings indicate that commonplace 𝞬-FeMn alloys, long used for exchange biasing since the 1970s, can be transformed into practical alternatives to topological antiferromagnets in spintronic devices.
[1] Taylor, J. M., et al., Phys Rev B, Vol. 101, pgs. 094404, (2020)
[2] Nakatsuji, S., et al., Nat, Vol. 527, pgs. 212-215, (2015).
[3] Hanke, J. P., et al., Sci. Rep, Vol. 7, pg. 41078, (2017)
[4] Kubler, J., et al., Jour. of Phys F: Met. Phys, Vol. 18, (1988)
[5] Cankurtaran, M., et al, Phys Rev B, Vol. 47, pgs. 3161-3170, (1993).
–
Presenters
-
Rachel E Maizel
Virginia Tech
Authors
-
Rachel E Maizel
Virginia Tech
-
Omolara A Bakare
Virginia Tech
-
Galen T Street
Virginia Polytechnic Institute, Virginia Tech
-
Sachli Abdizadeh Kalan
Virginia Polytechnic Institute and State University
-
Satoru Emori
Virginia Tech
-
Sanyum Channa
Stanford University
-
Daisy O'Mahoney
Stanford University
-
Yuri Suzuki
Stanford University
-
Rishav Khatiwada
Virginia Tech
-
Jean J. Heremans
Virginia Tech
-
Jing Zhao
Virginia Tech
-
Frederick M Michel
Virginia Tech
-
Charis Horn
Virginia Tech
-
Mitsu Murayama
Virginia Tech
-
Christoph Klewe
Lawrence Berkeley National Laboratory
-
Alpha T N'Diaye
Lawrence Berkeley National Laboratory, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
-
Emilio Corrales
Virginia Tech
-
Vsevolod M Ivanov
Virginia Tech