Molecular Dynamics and Deep Learning for Materials Including TMDC & Oxide Moire Structures: I
FOCUS · MAR-Q49 · ID: 3104492
Presentations
-
Deep Reinforcement Learning for Slow Diffusion Processes in Materials
ORAL · Invited
–
Presenters
-
Ken-ichi Nomura
University of Southern California
Authors
-
Ken-ichi Nomura
University of Southern California
-
Aiichiro Nakano
University of Southern California
-
Rajiv K Kalia
University of Southern California
-
Tian Sang
University of Southern California
-
Ankit Mishra
University of Southern California
-
-
Neural Network Dynamics for Barium Titanate (BaTiO3) Moire Structures
ORAL
–
Presenters
-
Anikeya Aditya
University of Southern California
Authors
-
Anikeya Aditya
University of Southern California
-
Ken-ichi Nomura
University of Southern California
-
Nitish Baradwaj
University of Southern California
-
Aiichiro Nakano
University of Southern California
-
Rajiv K Kalia
University of Southern California
-
Priya Vashishta
University of Southern California
-
-
Composite verifiable ML potentials for moiré materials
ORAL
–
Publication: J. D. Georgaras*, A. Ramdas* , and F. H. da Jornada, in preparation.
Presenters
-
Akash Ramdas
Stanford University
Authors
-
Akash Ramdas
Stanford University
-
Johnathan Dimitrios Georgaras
Stanford University
-
Felipe H da Jornada
Stanford University
-
-
Computationally Trackable and Transferable Validation of MLIPs for Moiré Materials through Topologically-Exhaustive 1D Moiré Paths
ORAL
–
Publication: J. D. Georgaras*, A. Ramdas* , and F. H. da Jornada, in preparation.
Presenters
-
Johnathan Dimitrios Georgaras
Stanford University
Authors
-
Johnathan Dimitrios Georgaras
Stanford University
-
Akash Ramdas
Stanford University
-
Felipe H da Jornada
Stanford University
-
-
Raman Spectroscopy of Transition Metal Dichalcogenide Mo<sub>1-x</sub>W<sub>x</sub>S<sub>2-2y</sub>Se<sub>2y</sub> Alloys through Machine-Learned Force Fields
ORAL
–
Publication: Siddiqui, A., Hine, N.D.M. Machine-learned interatomic potentials for transition metal dichalcogenide Mo1−xWxS2−2ySe2y alloys. npj Comput Mater 10, 169 (2024). https://doi.org/10.1038/s41524-024-01357-9
Presenters
-
Anas Siddiqui
University of Warwick
Authors
-
Anas Siddiqui
University of Warwick
-
Nicholas D Hine
University of Warwick
-
-
Advancing Neural Network Potentials for the Temperature-Dependent Dynamics of Complex Energy Materials
ORAL · Invited
–
Publication: 1. R. Lot, F. Pellegrini, Y. Shaidu and E. Kucukbenli, PANNA: Properties from artificial neural network architectures. Computer Physics Communications 256 (2020) 107402<br>2. Y. Shaidu, R. Lot, F. Pellegrini, Kucukbenli E. and de Gironcoli S., A systematic approach to generating accurate neural network<br>potentials: the case of carbon, npj Computational Materials (2021) 52 7<br>3. F. Pellegrini, R. Lot, Y. Shaidu and E. Kucukbenli "PANNA 2.0: Efficient neural network interatomic potentials and new architectures." J. Chem. Phys. 159, 084117 (2023).<br>4. Y. Shaidu, A. Smith, E. Taw and J. B. Neaton Carbon Capture Phenomena in Metal-Organic Frameworks with Neural Network Potentials. PRX Energy, 2023, 2.2: 023005.<br>5. K. J. Kotoko, K. Sodoga, Y. Shaidu, N. Seriani, S. Borah, and K. Beltako, Uniaxial Tensile-Induced Phase Transition in Graphynes, J. Phys. Chem. C 2024, 128, 17058−17072<br>6. Y. Shaidu, W. DeSnoo, A. Smith, E. Taw, and J. B. Neaton, Entropic Effects on Diamine Dynamics and CO2 Capture in Diamine-<br>Appended Mg2(dopbdc) Metal−Organic Frameworks. J. Phys. Chem. Lett. 2024, 15, 1130−11<br>7. Y. Shaidu, F. Pellegrini, R. Lot, Kucukbenli E. and de Gironcoli S., Incorporating long-range electrostatics in neural network potentials via variational charge equilibration from shortsighted ingredients npj Computational Materials (2024) 10 47<br>8. Shaidu Y. et al. Accurate Dispersion-Aware Neural Network Potentials for Twisted Bilayer Transition Metal Dichalcogenides, in preparation, 2024.<br>
Presenters
-
Yusuf Shaidu
University of California, Berkeley
Authors
-
Yusuf Shaidu
University of California, Berkeley
-
-
Influence of vibrational strong coupling on intermolecular interactions in liquid water via cavity molecular dynamics simulation
ORAL
–
Presenters
-
Iman Ahmadabadi
University of Maryland College Park and Princeton University
Authors
-
Iman Ahmadabadi
University of Maryland College Park and Princeton University
-
Michael Ruggenthaler
Max Planck Institute for the Structure and Dynamics of Matter
-
Johannes Flick
CCNY, CUNY GC, Simons Foundation (Flatiron Institute), City College of New York, City College of New York and Flatiron Institute's Center for Computational Quantum Physics (CCQ)
-
Angel Rubio
Max Planck Institute for the Structure & Dynamics of Matter, Max Planck Institute for the Structure & Dynamics of Matter; Flatiron Institute's Center for Computational Quantum Physics (CCQ) & Initiative for Computational Catalysis (ICC)
-
-
Accurate electron correlation-energy functional: Expansion in an interaction renormalized by the random-phase approximation
ORAL
–
Presenters
-
Mario D Benites
Florida State University
Authors
-
Mario D Benites
Florida State University
-
Angel Rosado
Florida State University
-
Efstratios Manousakis
Florida State University
-
-
Reducing Numerical Precision Requirements in Electronic Structure Calculations
ORAL
–
Publication: arXiv:2407.13299
Presenters
-
William Dawson
RIKEN Center for Computational Science
Authors
-
William Dawson
RIKEN Center for Computational Science
-
Jens Domke
RIKEN R-CCS
-
Katsuhisa Ozaki
Shibaura Institute of Technology
-
Takahito Nakajima
RIKEN R-CCS
-
-
Beyond-mean-field studies of Wigner crystal transitions in various interacting two-dimensional systems
ORAL
–
Publication: Zhongqing Guo, Jianpeng Liu, Beyond-mean-field studies of Wigner crystal transitions in various interacting two-dimensional systems, arXiv: 2409.14658 (2024)
Presenters
-
Zhongqing Guo
ShanghaiTech University
Authors
-
Zhongqing Guo
ShanghaiTech University
-
Jianpeng Liu
ShanghaiTech University
-