APS Logo

Spin and valley-polarized multiple Fermi surfaces of α-RuCl<sub>3</sub>/bilayer graphene heterostructure

ORAL

Abstract

We report the transport properties of α-RuCl3/bilayer graphene heterostructures, where carrier doping is induced by a work function difference, resulting in distinct electron and hole populations in α-RuCl3 and bilayer graphene, respectively. Through a comprehensive analysis of multi-channel transport signatures, including Hall measurements and quantum oscillation, we unveil significant band modifications within the system. In particular, we observe the emergence of spin and valley-polarized multiple hole-type Fermi pockets, originating from the spin-selective band hybridization between α-RuCl3 and bilayer graphene, breaking the spin degree of freedom. Unlike the α-RuCl3/monolayer graphene system, the presence of different hybridization strengths between a-RuCl3 and the top and bottom graphene layers leads to an asymmetric behavior of the two layers, confirmed by effective mass experiments, resulting in the manifestation of valley-polarized Fermi pockets. These compelling findings establish α-RuCl3 proximitized to bilayer graphene as an outstanding platform for engineering its unique low-energy band structure.

Presenters

  • Soyun Kim

    Daegu Gyeongbuk Institute of Science and Technology

Authors

  • Soyun Kim

    Daegu Gyeongbuk Institute of Science and Technology

  • Jeonghoon Hong

    Indiana University Bloomington

  • Kenji Watanabe

    National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National Institute of Material Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science

  • Takashi Taniguchi

    National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science

  • Joseph L Falson

    Caltech

  • Jeongwoo Kim

    Incheon National University

  • Youngwook Kim

    Daegu Gyeongbuk Institute of Science and Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)