APS Logo

Exploring the energy spectrum of a four-terminal Josephson junction: towards topological Andreev matter

ORAL

Abstract

Hybrid multiterminal Josephson junctions (JJs) are emerging platforms for manipulating Andreev bound states (ABSs). In these systems, ABSs depend on multiple superconducting phases, leading to new properties such as molecule-like states, phase-induced spin splitting, and ground-state parity transitions. In a four-terminal geometry, ABSs are predicted to hybridize, resulting in a non-trivial topological band structure characterized by Weyl nodes at zero energy [1-6]. In this talk, I present the realization of a four-terminal JJ fabricated on a hybrid Al/InAs heterostructure, where three phase differences are independently controlled via flux biasing. Using tunnelling spectroscopy, we explore the ABS band structure across the 3D phase space. Specifically, we identify spectral signatures indicative of effective hybridization among three ABSs. Our measurements are supported by theoretical simulations that reproduce the signatures of the Andreev tri-molecule experimentally observed. Moreover, our simulations predict the formation of Weyl nodes, which remain stable within an extended region of parameter space accessible by our experimental system. Our approach provides a deep understanding of the complex ABS band structure in four-terminal devices, establishing solid experimental foundations for future realizations of topological phases in multiterminal JJs.



[1] van Heck, B. et al., Phys. Rev. B 90, 155450 (2014).

[2] Yokoyama, T. et al., Phys. Rev. B 92, 155437 (2015).

[3] Riwar, R.-P. et al., Nat. Commun. 7, 11167 (2016).

[4] Eriksson, E. et al., Phys. Rev. B 95, 075417 (2017).

[5] Meyer, J. S. et al. Phys. Rev. Lett. 119, 136807 (2017).

[6] Klees, R. L. et al. Phys. Rev. Lett. 124, 197002 (2020).

Publication: T. Antonelli, et. al. (in preparation)

Presenters

  • Tommaso Antonelli

    ETH Zurich

Authors

  • Tommaso Antonelli

    ETH Zurich

  • Marco Coraiola

    IBM Research, IBM Research Europe—Zurich

  • David Christian Ohnmacht

    Universtität Konstanz, University Konstanz

  • Aleksandr Svetogorov

    Universtität Konstanz

  • Manuel Hinderling

    IBM Research - Zurich, IBM Research Europe - Zurich, IBM research

  • Deividas Sabonis

    IBM Research, IBM Research Europe—Zurich

  • Sofieke C ten Kate

    IBM Research - Zurich, IBM Research Europe - Zurich

  • Erik Cheah

    ETH Zurich

  • Filip Krizek

    Academy of Sciences of the Czech Republic

  • Ruediger Schott

    ETH Zurich

  • Wolfgang Belzig

    University Konstanz

  • Juan Carlos Cuevas

    IFIMAC, Universidad Autonoma de Madrid, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, University of Madrid

  • Werner Wegscheider

    ETH Zurich, ETH-Zurich, Department of Physics, ETH Zurich

  • Fabrizio Nichele

    IBM Research - Zurich, IBM Research Europe - Zurich, IBM Research Europe—Zurich