FASQuiC : An Heterogeneous Distributed Architecture for Scalable Qubit Feedback Experiments
ORAL
Abstract
In this presentation, we outline our FPGA solution : FASQuiC (Flexible Architecture for Scalable Spin Qubit Control). FASQuiC is scalable in terms of resources and feedback latency due to its heterogeneous, distributed architecture, which includes dedicated lightweight processors. It also embeds Direct Digital Synthesis (DDS) signal generators for ramps and sine combs [14] tailored for scalable spin qubit control. Up to now, two hardware accelerators have been developed in the heterogeneous architecture for the fast initialization of qubit states, and embedded Randomized Benchmarking (RB).
FASQuiC is capable of generating programmable combinations of ramps, frequency combs, and AWG at 5 GS/s with a maximal waveform reconfiguration latency of 76.8 ns. In terms of feedback latency, fast initialization of Singlet or Triplet state has been successfully conducted on a spin qubit device with digital latency of 137.6 ns. The RB hardware accelerator generates a random gate among a Clifford set on-the-fly with less than 58.4 ns of deadtime and compute the inverted gate in 89.6 ns.
–
Publication: [1] Y. Salathe, P. Kurpiers, T. Karg, C. Lang, C. K. Andersen, A. Akin, ´ C. Eichler, and A. Wallraff, "Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication," Physical Review Applied, vol. 9, no. 3, p. 034011, Mar. 2018. <br>[2] N. Irtija, J. Plusquellic, E. E. Tsiropoulou, J. Goldberg, D. Lobser, and D. Stick, "Design and analysis of digital communication within an SoCbased control system for trapped-ion quantum computing," arXiv, Tech. Rep. arXiv:2209.15601, Sep. 2022.<br>[3] S. Maurya and S. Tannu, "COMPAQT: Compressed Waveform Memory Architecture for Scalable Qubit Control," in IEEE MICRO, 2022. <br>[4] M. O. Tholen´ et al., "Measurement and control of a superconducting quantum processor with a fully-integrated radio-frequency system on a chip," Review of Scientific Instruments, vol. 93, 2022. <br>[5] X. Qin, W. Zhang, L. Wang, Y. Zhao, Y. Tong, X. Rong, and J. Du, "An FPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems," IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1127–1139, Apr. 2020. <br>[6] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture," in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). Washington, DC, USA: IEEE, Feb. 2019, pp. 224–237. <br>[7] Y. Yang, Z. Shen, X. Zhu, Z. Wang, G. Zhang, J. Zhou, X. Jiang, C. Deng, and S. Liu, "FPGA-based electronic system for the control and readout of superconducting quantum processors," Review of Scientific Instruments, vol. 93, no. 7, p. 074701, Jul. 2022. <br>[8] U. Singhal, S. Kalipatnapu, P. K. Gautam, S. Majumder, V. V. L. Pabbisetty, S. Jandhyala, V. Singh, and C. S. Thakur, "SQ-CARS: A Scalable Quantum Control and Readout System," IEEE Trans. Instrum. Meas., vol. 72, pp. 1–15, 2023. <br>[9] Y. Xu, G. Huang, N. Fruitwala, A. Rajagopala, R. K. Naik, K. Nowrouzi, D. I. Santiago, and I. Siddiqi, "QubiC 2.0: An Extensible Open-Source Qubit Control System Capable of Mid-Circuit Measurement and FeedForward," arXiv, Tech. Rep. arXiv:2309.10333, Sep. 2023. <br>[10] C. Ding, M. Di Federico, M. Hatridge, A. Houck, S. Leger, J. Martinez, C. Miao, D. S. I, L. Stefanazzi, C. Stoughton, S. Sussman, K. Treptow, S. Uemura, N. Wilcer, H. Zhang, C. Zhou, and G. Cancelo, "Experimental advances with the QICK (Quantum Instrumentation Control Kit) for superconducting quantum hardware," Phys. Rev. Res., vol. 6, no. 1, p. 013305, Mar. 2024. <br>[11] R. Gebauer, N. Karcher, D. Gusenkova, M. Spiecker, L. Grunhaupt, ¨ I. Takmakov, P. Winkel, L. Planat, N. Roch, W. Wernsdorfer, A. V. Ustinov, M. Weber, M. Weides, I. M. Pop, and O. Sander, "State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform," AIP Conference Proceedings, vol. 2241, no. 1, p. 020015, Jun. 2020. <br>[12] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton, C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Cancelo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi, A. Agrawal, H. Zhang, C. Ding, and D. I. Schuster, "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors," Review of Scientific Instruments, vol. 93, no. 4, p. 044709, Apr. 2022. <br>[13] K. H. Park, Y. S. Yap, Y. P. Tan, C. Hufnagel, L. H. Nguyen, K. H. Lau, P. Bore, S. Efthymiou, S. Carrazza, R. P. Budoyo, and R. Dumke, "ICARUS-Q: Integrated control and readout unit for scalable quantum processors," Review of Scientific Instruments, vol. 93, no. 10, p. 104704, Oct. 2022. <br>[14] M. Toubeix, E. Guthmuller, A. Evans, A. Faurie, and T. Meunier, "FASQuiC: Flexible Architecture for Scalable spin Qubit Control," IEEE Transactions on Quantum Engineering, pp. 1–15, 2024<br><br>
Presenters
-
Mathieu TOUBEIX
CEA,List; CNRS, Institut Néel, Université Grenoble Alpes, CNRS, Institut Néel, Université Grenoble Alpes
Authors
-
Mathieu TOUBEIX
CEA,List; CNRS, Institut Néel, Université Grenoble Alpes, CNRS, Institut Néel, Université Grenoble Alpes
-
Antoine FAURIE
CEA,LETI, Université Grenoble Alpes
-
Eric GUTHMULLER
CEA,LIST,Université Grenoble Alpes
-
Pierre Hamonic
CNRS,Institut Néel, Université Grenoble Alpes, Institut Neel
-
Matias Urdampilleta
CNRS,Institut Néel, Université Grenoble Alpes, CNRS
-
Tristan Meunier
CNRS,Institut Néel, Université Grenoble Alpes, Quobly & Institut Néel, CNRS