Prize Talk: Rahman Prize for Computational Physics: First-principles studies of nonradiative recombination mechanisms
ORAL · Invited
Abstract
I will focus on recombination at point defects and impurities. Multiphonon emission has typically been assumed to be the energy-dissipation mechanism [1,2], but fails to explain losses in materials with band gaps larger than about 2.5 eV. We have demonstrated the role of excited states [3] and of trap-assisted Auger-Meitner (AM) recombination [4]. Similar to band-to-band AM recombination [5], a trap-assisted AM process enables capture by exciting a carrier to a higher-energy state. For band gaps larger than 2.5 eV, the trap-assisted AM process results in recombination rates orders of magnitude larger than the rate governed by multiphonon emission alone.
I will illustrate these developments with examples for nitride-based light emitters as well as quantum defects. Our computational formalisms are general and can be applied to any defect or impurity in any semiconducting or insulating material.
I gratefully acknowledge collaborations with A. Alkauskas†, K. Bushick, K. Czelej, C. Dreyer, E. Kioupakis, G. Kresse, M. R. Lambert, W. Lee, J. L. Lyons, S. Mu, N. Pant, J. Shen, M. Turiansky, D. Wickramaratne, Q. Yan, X. Zhang, and F. Zhao.
[1] A. Alkauskas, Q. Yan, and C. G. Van de Walle, Phys. Rev. B 90, 075202 (2014).
[2] C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. Van de Walle, Appl. Phys. Lett. 108, 141101 (2016).
[3] A. Alkauskas, C. E. Dreyer, J. L. Lyons, and C. G. Van de Walle, Phys. Rev. B 93, 201304 (2016).
[4] F. Zhao, M. E. Turiansky, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. Lett. 131, 056402 (2023).
[5] E. Kioupakis, D. Steiauf, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Phys. Rev. B 92, 035207 (2015).
–
Publication: [1] A. Alkauskas, Q. Yan, and C. G. Van de Walle, Phys. Rev. B 90, 075202 (2014).<br>[2] C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. Van de Walle, Appl. Phys. Lett. 108, 141101 (2016). <br>[3] A. Alkauskas, C. E. Dreyer, J. L. Lyons, and C. G. Van de Walle, Phys. Rev. B 93, 201304 (2016).<br>[4] F. Zhao, M. E. Turiansky, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. Lett. 131, 056402 (2023).<br>[5] E. Kioupakis, D. Steiauf, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Phys. Rev. B 92, 035207 (2015).
Presenters
-
Chris G Van de Walle
University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.
Authors
-
Chris G Van de Walle
University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.