Machine Learning for Atomistic Simulation V: Vibrational, Transport, and Magnetic Properties
FOCUS · MAR-M50 · ID: 3104700
Presentations
-
Machine learning methods for finite-temperature full-quantum simulations: Predictive modelling of condensed phases and interfaces
ORAL · Invited
–
Publication: [1] Kaur, H., Della Pia, F., Batatia, I., Advincula, X. R., Shi, B. X., Lan, J., Csányi, G., Michaelides, A., & Kapil, V. (2024). Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. https://doi.org/10.48550/ARXIV.2405.20217<br><br>[2] Kapil, V., Kovács, D. P., Csányi, G., & Michaelides, A. (2023). First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. Faraday Discussions, 10.1039.D3FD00113J. https://doi.org/10.1039/D3FD00113J<br><br>[3] Musil, F., Zaporozhets, I., Noé, F., Clementi, C., & Kapil, V. (2022). Quantum dynamics using path integral coarse-graining. The Journal of Chemical Physics, 157(18), 181102. https://doi.org/10.1063/5.0120386<br><br>[4] Kapil, V., Schran, C., Zen, A., Chen, J., Pickard, C. J., & Michaelides, A. (2022). The first-principles phase diagram of monolayer nanoconfined water. Nature, 609(7927), 512–516. https://doi.org/10.1038/s41586-022-05036-x<br><br>[5] Ravindra, P., Advincula, X. R., Schran, C., Michaelides, A., & Kapil, V. (2024). Quasi-one-dimensional hydrogen bonding in nanoconfined ice. Nature Communications, 15(1), 7301. https://doi.org/10.1038/s41467-024-51124-z<br><br>[6] Ravindra, P., Advincula, X. R., Shi, B. X., Coles, S. W., Michaelides, A., & Kapil, V. (2024). Nuclear quantum effects induce superionic proton transport in nanoconfined water. arXiv. https://doi.org/10.48550/ARXIV.2410.03272
Presenters
-
Venkat Kapil
University College London
Authors
-
Venkat Kapil
University College London
-
-
Nuclear Quantum Effects on the Melting Properties of First-Principles Water Models
ORAL
–
Presenters
-
Yifan Li
Princeton University
Authors
-
Yifan Li
Princeton University
-
Bingjia Yang
Princeton University
-
Chunyi Zhang
Princeton University
-
Pinchen Xie
Lawrence Berkeley National Lab, Princeton University
-
Yixiao Chen
Princeton University
-
Pablo Miguel Piaggi
Princeton University
-
Roberto Car
Princeton University
-
-
Thermal Conductivity Predictions with Foundation Atomistic Models
ORAL
–
Publication: Póta, B., Ahlawat, P., Csányi, G., & Simoncelli, M. (2024). Thermal Conductivity Predictions with Foundation Atomistic Models. arXiv preprint arXiv:2408.00755.
Presenters
-
Balazs Pota
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge
Authors
-
Balazs Pota
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge
-
Paramvir Ahlawat
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge
-
Gabor Csanyi
Engineering Laboratory, University of Cambridge, Applied Mechanics Group, Mechanics, Materials and Design, Department of Engineering, University of Cambridge
-
Michele Simoncelli
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Univ of Cambridge, TCM group, Cavendish Laboratory, University of Cambridge
-
-
Accuracy of Phonon Dispersion Calculations via Machine Learning Potentials
ORAL
–
Presenters
-
Jaesuk Park
University of Texas at Austin
Authors
-
Jaesuk Park
University of Texas at Austin
-
Feliciano Giustino
University of Texas at Austin
-
-
Model expressiveness and data sampling effects on phonon uncertainty quantification in machine-learning interatomic potentials
ORAL
–
Presenters
-
Young-Jae Choi
University of Illinois at Urbana-Champaign
Authors
-
Young-Jae Choi
University of Illinois at Urbana-Champaign
-
Lucas K Wagner
University of Illinois at Urbana-Champaign
-
-
Dynamically training machine learning based force-fields for strongly anharmonic materials
ORAL
–
Presenters
-
Martin Callsen
Academia Sinica
Authors
-
Martin Callsen
Academia Sinica
-
Tai-Ting Lee
Academia Sinica
-
Mei-Yin Chou
Academia Sinica
-
-
Oral: Prediction of Thermal Conductivity in CALF-20 with First-Principles Accuracy via Machine Learning Interatomic Potentials
ORAL
–
Publication: Submitted to Communications Materials
Presenters
-
Soham Mandal
Indian Institute of Science Bangalore
Authors
-
Soham Mandal
Indian Institute of Science Bangalore
-
Prabal K Maiti
Indian Institute of Science, Bangalore, Indian Institute of Science, Indian Institute of Science Bangalore
-
-
Charge density wave order in twisted niobium diselenide: a machine-learning interatomic approach
ORAL
–
Presenters
-
Norma Rivano
Harvard
Authors
-
Norma Rivano
Harvard
-
Zachary AH Goodwin
University of Oxford, Harvard University
-
Francesco Libbi
Harvard University
-
Chuin Wei Tan
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Efficient Modelling of Anharmonicity and Quantum Effects in PdCuH$_2$ with Machine Learning Potentials
ORAL
–
Publication: F. Belli, E. Zurek. Efficient Modelling of Anharmonicity and Quantum Effects in PdCuH2 with Machine Learning Potentials. arXiv preprint: arXiv:2406.13178
Presenters
-
Francesco Belli
State Univ of NY - Buffalo
Authors
-
Francesco Belli
State Univ of NY - Buffalo
-
Eva D Zurek
State Univ of NY - Buffalo
-
-
A universal force field for molecular and electron dynamics
ORAL
–
Presenters
-
Anthony Mannino
Stony Brook University (SUNY)
Authors
-
Anthony Mannino
Stony Brook University (SUNY)
-
Isidro Losada Lopez
Univ Autonoma de Madrid
-
Simon Divilov
Duke University
-
Eduardo Hernandez
Consejo Superior de Investigaciones Científicas
-
Javier Junquera
Universidad de Cantabria
-
Marivi Fernandez-Serra
Stony Brook University
-
Jose M Soler
Univ Autonoma de Madrid
-
-
Abstract Withdrawn
ORAL Withdrawn
–
-
Effect of Local Water Uptake on Proton Transport in Covalent Organic Framework revealed by Machine-Learning Potentials
ORAL
–
Publication: S. Minami et al., Chemistry of Materials, 2024, 36, 19, 9535-9546, DOI: 10.1021/acs.chemmater.4c01351
Presenters
-
Saori Minami
Toyota Central R&D Labs, Inc.
Authors
-
Saori Minami
Toyota Central R&D Labs, Inc.
-
Masane Kin
DENSO CORPORATION
-
Kazuki Takahashi
DENSO CORPORATION
-
Takashi Sato
DENSO CORPORATION
-
Ryosuke Jinnouchi
Toyota Central R&D Labs, Inc.
-
-
Revealing the fundamental proton transport mechanism in solid acid compounds through machine learning molecular dynamics
ORAL
–
Presenters
-
Menghang Wang
Harvard University
Authors
-
Menghang Wang
Harvard University
-
Jingxuan Ding
Harvard University
-
Grace Xiong
Northwestern University
-
Ni Zhan
Princeton University
-
Cameron John Owen
Harvard University
-
Albert Musaelian
Harvard University
-
Yu Xie
Harvard University
-
Nicola Molinari
Robert Bosch LLC
-
Ryan P Adams
Princeton University
-
Sossina M Haile
Northwestern University
-
Boris Kozinsky
Harvard University
-