Aharonov-Bohm interference and Statistical phase-jumps in fractional quantum Hall Fabry-Perot interferometers based on bi-layer graphene
ORAL
Abstract
In this talk, I will present a bilayer graphene-based FPI, allowing us to explore a wide range of operating regimes, from Coulomb-dominated to Aharonov-Bohm, across both integer and fractional quantum Hall states. We employ low-temperature electronic transport measurements in high magnetic fields. We use an analysis method to extract phase evolution from 2D resistance oscillation patterns, providing critical insights into anyonic excitations within the FPI. Moreover, we analyze the trajectory of constant phase lines in the resistance oscillations using the 1D-FFT method to assess the linear dependence of phase on the number of electrons in the interference loop for . The observation of pristine AB oscillations, along with their tunability, phase slips, and altered phase evolution, points to the nature of anyonic exchange statistics.
References
1. Stern, A. Anyons and the quantum Hall effect—A pedagogical review. Ann. Phys. 323, 204–249 (2008).
2. Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 1–8 (2024) doi:10.1038/s41565-024-01751-w.
3. Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. arXiv (2024) doi:10.48550/arxiv.2403.19628.
4. Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. arXiv (2024) doi:10.48550/arxiv.2403.18983.
5. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
–
Publication: Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
Presenters
-
HIMANSHU DEV
Wiezmann Institute of Scince
Authors
-
HIMANSHU DEV
Wiezmann Institute of Scince
-
Shaun G Newman
Weizmann Institute of Science, Rice University, Wiezmann Institute of Scince, Columbia University, University of Texas at Austin, Los Alamos National Laboratory
-
Ravi Kumar
Weizmann Institute of Science
-
Alexey Ilin
Weizmann Institute of Science
-
André Haug
Weizmann Institute of Science
-
Vishal Bhardwaj
Weizmann Institute of Science
-
Changki Hong
Wiezmann Institute of Science
-
Kenji Watanabe
National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National Institute of Material Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science
-
Takashi Taniguchi
National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science
-
Ady L Stern
Weizmann Institute of Science
-
Yuval Ronen
Weizmann Institute of Science