APS Logo

Observation of Cooper-pair density modulation state

ORAL

Abstract

Superconducting states that break space-group symmetries of the underlying crystal can exhibit nontrivial spatial modulation of the order parameter. Previously, such remarkable states were intimately associated with the breaking of translational symmetry, giving rise to the density-wave orders, with wavelengths spanning several unit cells. However, a related basic concept has been long overlooked: when only intra-unit-cell symmetries of the space group are broken, the superconducting states can display a distinct type of nontrivial modulation preserving long-range lattice translation. Here, we refer to this new concept as the pair density modulation (PDM), and report the first observation of a PDM state in exfoliated thin flakes of iron-based superconductor FeTe0.55Se0.45. Using scanning tunneling microscopy, we discover robust superconducting gap modulation with the wavelength corresponding to the lattice periodicity and the amplitude exceeding 30% of the gap average. Importantly, we find that the observed modulation originates from the large difference in superconducting gaps on the two nominally equivalent iron sublattices. The experimental findings, backed up by model calculations, suggest that in contrast to the density-wave orders, the PDM state is driven by the interplay of sublattice symmetry breaking and a peculiar nematic distortion specific to the thin flakes. Our results establish new frontiers for exploring the intertwined orders in strong-correlated electronic systems and open a new chapter for iron-based superconductors.

Publication: https://arxiv.org/abs/2404.10046

Presenters

  • Lingyuan Kong

    Caltech

Authors

  • Lingyuan Kong

    Caltech

  • Michal Papaj

    University of Houston, University of California, Berkeley

  • Hyunjin Kim

    Caltech

  • Yiran Zhang

    Harvard University, Caltech

  • Eli Nathaniel Baum

    Caltech

  • Hui Li

    Northwestern University, Brookhaven National Laboratory

  • Kenji Watanabe

    National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, National Institute of Material Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science

  • Takashi Taniguchi

    National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science

  • Genda Gu

    Brookhaven National Laboratory (BNL)

  • Patrick A Lee

    Massachusetts Institute of Technology, Department of Physics, MIT, Cambridge, MA, USA

  • Stevan Nadj-Perge

    Caltech