Quanta-Bind: A quantum computing pipeline for strongly correlated systems in metalloproteins
ORAL
Abstract
Earlier work demonstrated the algorithmic development of this pipeline and its utility in biomolecular calculations. Here, we emphasize the pipeline’s scalability by demonstrating results of calculations on high performance computers with quantum simulators.
–
Publication: Qidong Xu and Kanav Setia. Truncation technique for Variational Quantum Eigensolver For Molecular Hamiltonians .2024. arXiv: 2402.01630 [quant-ph].<br>Matthew Otten and Thomas W. Watts and Samuel D. Johnson and Rashmi Sundareswara and Zhihui Wang and Tarini S. Hardikar and Kenneth Heitritter and James Brown and Kanav Setia and Adam Holmes. Quantum Resources Required for Binding Affinity Calculations of Amyloid beta. 2024. arXiv:2406.18744 [quant-ph]<br>Abhishek Mitra, Ruhee D'Cunha, Qiaohong Wang, Matthew R. Hermes, Yuri Alexeev, Stephen K. Gray, Matthew Otten, and Laura Gagliardi, Journal of Chemical Theory and Computation 2024 20 (18), 7865-7875<br>DOI: 10.1021/acs.jctc.4c00528<br>Tarini S. Hardikar, Kenneth Heitritter, James Brown, Ruhee D'Cunha, Abhishek Mitra, Shaun Weatherly, Yuan Liu, Matthew Otten, Troy Van Voorhis, Laura Gagliardi and Kanav Setia Quanta-Bind: A quantum computing pipeline for modeling strongly correlated metal-<br>protein interactions. IEEE Quantum Week 2024.
Presenters
-
Tarini Shekhar Hardikar
qBraid
Authors
-
Tarini Shekhar Hardikar
qBraid
-
James Brown
qBraid
-
Kenneth IJ Heitritter
qBraid
-
Ruhee D'Cunha
University of Chicago
-
Shaun Weatherly
Massachusetts Institute of Technology
-
Yuan Liu
North Carolina State University
-
Matthew Otten
University of Wisconsin - Madison
-
Elica Kyoseva
NVIDIA
-
Troy Van Voorhis
Massachusetts Institute of Technology
-
Yuri Alexeev
NVIDIA Corporation, NVIDIA
-
Laura Gagliardi
University of Chicago
-
Kanav Setia
qBraid