APS Logo

Three-dimensional control and imaging of spin waves in nanostructured thin films

ORAL · Invited

Abstract

In the field of magnonics, harnessing the third dimension has become one of the most desired capabilities for introducing new functionalities. To this goal, understanding and manipulating spin-waves in three-dimensional nanostructured systems are crucial. Here, we discuss two recent advancements in the field: the imaging of spin waves in 3D using Soft X-Ray Laminography (TR-SoXL) [1], and the three-dimensional control of magnetism in crystalline Yttrium Iron Garnet via direct laser irradiation [3].

The experimental visualization of propagating spin waves in three-dimensions has been elusive, due to the need of combining nanoscale spatial resolution in 3D, and time resolution in the GHz frequency range. We use TR-SoXL, to image in three-dimensions spin waves emitted by nanoscale spin textures and study their propagation in a synthetic antiferromagnets. We reconstruct propagating spin waves in three-dimensions, and map the distribution of the SW modes throughout the volume. We observe complex depth-dependent SW profiles, giving rise to three-dimensional interference patterns.

Then, we introduce a new methodology based on phase nanoengineering [2] for direct three-dimensional nanostructuring of crystalline YIG thin film [3]. We show that by irradiating single-crystal YIG films with a focused UV laser, we drive a giant stable enhancement of the perpendicular magnetic anisotropy, in nanoscale regions confined in three-dimensions and whose extension within the volume of the system can be finely controlled. By harnessing these three-dimensional anisotropy profiles, we demonstrate a fine tuning of the spin-wave band structure, and spatial localization of the spin-wave modes within the volume, realizing proof-of-principle magnonic materials and magnonic crystals.



[1] Girardi et al. Nat. Commun. 15, 3057 (2024).

[2] V. Levati, et al., Adv. Mater. Technol, 8, 2300166 (2023).

[3] V. Levati, et al., arXiv:2409.17722 (2024).

Publication: [1] Girardi et al. Nat. Commun. 15, 3057 (2024).<br>[2] V. Levati, et al., Adv. Mater. Technol, 8, 2300166 (2023).<br>[3] V. Levati, et al., arXiv:2409.17722 (2024).

Presenters

  • Edoardo Albisetti

    Politecnico di Milano

Authors

  • Edoardo Albisetti

    Politecnico di Milano

  • Davide Girardi

    Dipartimento Fisica – Politecnico di Milano

  • Simone Finizio

    PSI

  • Claire Donnelly

    MPI

  • Valerio Levati

    Dipartimento Fisica – Politecnico di Milano

  • Federico Maspero

    Dipartimento Fisica – Politecnico di Milano

  • Jörg Raabe

    PSI

  • Daniela Petti

    Dipartimento Fisica – Politecnico di Milano

  • Matteo Vitali

    Dipartimento Fisica – Politecnico di Milano

  • Andrea Del Giacco

    Dipartimento Fisica – Politecnico di Milano

  • Nicola Pellizzi

    Dipartimento Fisica – Politecnico di Milano

  • Raffaele Silvani

    Università di Perugia

  • Marco Madami

    Università di Perugia

  • Irene Biancardi

    Dipartimento Fisica – Politecnico di Milano

  • Matteo Panzeri

    Dipartimento Fisica – Politecnico di Milano

  • Piero Florio

    Dipartimento Fisica – Politecnico di Milano

  • David Breitbach

    Universität Kaiserslautern-Landau

  • Philipp Pirro

    University of Kaiserslautern-Landau, Universität Kaiserslautern-Landau

  • Riccardo Bertacco

    Dipartimento Fisica – Politecnico di Milano

  • Giacomo Corrielli

    CNR

  • Roberto Osellame

    CNR

  • Valeria Russo

    Politecnico di Milano

  • Andrea Li Bassi

    Politecnico di Milano

  • Silvia Tacchi

    CNR