APS Logo

The Global Network of Optical Magnetometers for Exotic physics searches (GNOME)

POSTER

Abstract

Dark matter may consist of ultralight bosons such as axions, with masses far, far smaller than 1 eV [1]. Due to self-interactions, ultralight bosonic fields could form stable, macroscopic configurations in the form of boson stars [2], domain walls [3], or collect in gravitationally bound halos around stars like our Sun [4,5]. Cataclysmic astrophysical events (like black hole mergers) may produce intense bursts of bosonic fields [6]. In many of these scenarios, instead of being bathed in a uniform flux of dark matter, terrestrial detectors witness transient events when the exotic bosonic fields pass through Earth. The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is an international collaboration to look for such transient events [7-9]. GNOME is a worldwide network of more than a dozen time-synchronized optical atomic magnetometers, with stations in Europe, North America, Asia, the Middle East, and Australia. We report on our recent results [10,11] and future directions involving alkali/noble-gas comagnetometry [12] to improve the sensitivity of our sensors.

Publication: [1] Derek F. Jackson Kimball and Karl van Bibber, eds. The Search for Ultralight Bosonic Dark Matter (Springer, Cham Switzerland, 2022).<br><br>[2] D. F. Jackson Kimball et al., Searching for axion stars and Q-balls with a terrestrial magnetometer network, Phys. Rev. D 97, 043002 (2018).<br><br>[3] M. Pospelov et al., Detecting Domain Walls of Axionlike Models Using Terrestrial Experiments, Phys. Rev. Lett. 110, 021803 (2013).<br> <br>[4] Abhishek Banerjee et al., Searching for earth/solar axion halos. J. High Energy Phys. 2020, 4 (2020).<br><br>[5] D. Budker et al., A generic formation mechanism of ultralight dark matter solar halos. J. Cosmol. Astropart. Phys. 2023, 021 (2023).<br><br>[6] C. Dailey et al., Nature Astronomy 5, 150 (2021).<br><br>[7] S. Pustelny et al., The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model, Annalen der Physik 525, 659 (2013).<br><br>[8] S. Afach et al., Characterization of the Global Network of Optical Magnetometers to search for Exotic physics (GNOME), Physics of the Dark Universe 22, 162 (2018).<br><br>[9] S. Afach et al., What Can a GNOME Do? Search Targets for the Global Network of Optical Magnetometers for Exotic Physics Searches, Annalen der Physik 2023, 2300083 (2023).<br><br>[10] S. Afach et al., Search for topological defect dark matter with a global network of optical magnetometers, Nature Physics 17, 1396 (2021).<br><br>[11] S. S. Khamis et al., A multi-messenger search for exotic field emission with a global magnetometer network, arXiv:2407.13919, (2024).<br><br>[12] E. Klinger et al., Optimization of Nuclear Polarization in an Alkali-Noble Gas Comagnetometer, Phys. Rev. Appl. 19, 044092 (2023).

Presenters

  • Jose Zaragoza-Calderon

    California State University - East Bay

Authors

  • Jose Zaragoza-Calderon

    California State University - East Bay

  • Christopher A Palm

    California State University - East Bay

  • Tafai Muck

    California State University - East Bay

  • Sabria Hinton

    California State University, East Bay