Programmable photonic topological insulators
ORAL
Abstract
–
Publication: References:<br>[1] Y. Ando, "Topological Insulator Materials," Journal of the Physical Society of Japan, vol. 82, no. 10, p. 102001, 2013/10/15 2013, doi: 10.7566/JPSJ.82.102001.<br>[2] K. von Klitzing, "The quantized Hall effect," Reviews of Modern Physics, vol. 58, no. 3, pp. 519-531, 07/01/ 1986, doi: 10.1103/RevModPhys.58.519.<br>[3] E. J. Meier, F. A. An, and B. Gadway, "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, vol. 7, no. 1, p. 13986, 2016/12/23 2016, doi: 10.1038/ncomms13986.<br>[4] L. Kou, Y. Ma, Z. Sun, T. Heine, and C. Chen, "Two-Dimensional Topological Insulators: Progress and Prospects," The Journal of Physical Chemistry Letters, vol. 8, no. 8, pp. 1905-1919, 2017/04/20 2017, doi: 10.1021/acs.jpclett.7b00222.<br>[5] S. Mukhopadhyay, P. K. Pal, S. Manna, C. Mitra, and A. Barman, "All-optical observation of giant spin transparency at the topological insulator BiSbTe1.5Se1.5/Co20Fe60B20 interface," NPG Asia Materials, vol. 15, no. 1, p. 57, 2023/10/20 2023, doi: 10.1038/s41427-023-00504-w.<br>[6] Y. Yang et al., "Realization of a three-dimensional photonic topological insulator," Nature, vol. 565, no. 7741, pp. 622-626, 2019/01/01 2019, doi: 10.1038/s41586-018-0829-0.<br>[7] M. Z. Hasan and J. E. Moore, "Three-dimensional topological insulators," Annu. Rev. Condens. Matter Phys., vol. 2, no. 1, pp. 55-78, 2011.<br>[8] T. Ozawa et al., "Topological photonics," Reviews of Modern Physics, vol. 91, no. 1, p. 015006, 03/25/ 2019, doi: 10.1103/RevModPhys.91.015006.<br>[9] H. Price et al., "Roadmap on topological photonics," Journal of Physics: Photonics, vol. 4, no. 3, p. 032501, 2022/06/27 2022, doi: 10.1088/2515-7647/ac4ee4.<br>[10] D. Pérez, I. Gasulla, P. Das Mahapatra, and J. Capmany, "Principles, fundamentals, and applications of programmable integrated photonics," Adv. Opt. Photon., vol. 12, no. 3, pp. 709-786, 2020/09/30 2020, doi: 10.1364/AOP.387155.<br>[11] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, "Robust reconfigurable electromagnetic pathways within a photonic topological insulator," Nature materials, vol. 15, no. 5, pp. 542-548, 2016.<br>[12] T. Cao, L. Fang, Y. Cao, N. Li, Z. Fan, and Z. Tao, "Dynamically reconfigurable topological edge state in phase change photonic crystals," Science Bulletin, vol. 64, no. 12, pp. 814-822, 2019/06/30/ 2019, doi: https://doi.org/10.1016/j.scib.2019.02.017.<br>[13] A. Darabi, M. Collet, and M. J. Leamy, "Experimental realization of a reconfigurable electroacoustic topological insulator," Proceedings of the National Academy of Sciences, vol. 117, no. 28, pp. 16138-16142, 2020.<br>[14] J.-P. Xia et al., "Programmable Coding Acoustic Topological Insulator," Advanced Materials, vol. 30, no. 46, p. 1805002, 2018/11/01 2018, doi: https://doi.org/10.1002/adma.201805002.<br>[15] J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, and T. J. Cui, "Reprogrammable plasmonic topological insulators with ultrafast control," Nature Communications, vol. 12, no. 1, p. 5468, 2021/09/15 2021, doi: 10.1038/s41467-021-25835-6.<br>[16] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, "Non-Hermitian topological light steering," Science, vol. 365, no. 6458, pp. 1163-1166, 2019/09/13 2019, doi: 10.1126/science.aay1064.<br>[17] Y. Yang et al., "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, vol. 15, no. 1, p. 50, 2024/01/02 2024, doi: 10.1038/s41467-023-44185-z.<br>[18] M. B. On, F. Ashtiani, D. Sanchez-Jacome, D. Perez-Lopez, S. J. B. Yoo, and A. Blanco-Redondo, "Programmable integrated photonics for topological Hamiltonians," Nature Communications, vol. 15, no. 1, p. 629, 2024/01/20 2024, doi: 10.1038/s41467-024-44939-3.<br>[19] T. Dai et al., "A programmable topological photonic chip," Nature Materials, vol. 23, no. 7, pp. 928-936, 2024/07/01 2024, doi: 10.1038/s41563-024-01904-1.<br>[20] B. Saleh and M. Teich, Fundamentals of Photonics, 2nd Edition. 2007.<br>[21] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, "Robust optical delay lines with topological protection," Nature Physics, vol. 7, no. 11, pp. 907-912, 2011/11/01 2011, doi: 10.1038/nphys2063.<br>[22] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, vol. 7, no. 12, pp. 1001-1005, 2013/12/01 2013, doi: 10.1038/nphoton.2013.274.<br>[23] E. Sánchez, A. López, and D. Pérez-López, "Simulation of Highly Coupled Programmable Photonic Circuits," Journal of Lightwave Technology, vol. 40, no. 19, pp. 6423-6434, 2022, doi: 10.1109/JLT.2022.3194973.<br>[24] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, "Topological protection of biphoton states," Science, vol. 362, no. 6414, pp. 568-571, 2018, doi: doi:10.1126/science.aau4296.<br>[25] S. Mittal, E. A. Goldschmidt, and M. Hafezi, "A topological source of quantum light," Nature, vol. 561, no. 7724, pp. 502-506, 2018/09/01 2018, doi: 10.1038/s41586-018-0478-3.<br>[26] M. Wang et al., "Topologically protected entangled photonic states," vol. 8, no. 8, pp. 1327-1335, 2019, doi: doi:10.1515/nanoph-2019-0058.<br>[27] Y.-J. Chang et al., "Symmetry-Induced Error Filtering in a Photonic Lieb Lattice," Physical Review Letters, vol. 126, no. 11, p. 110501, 03/16/ 2021, doi: 10.1103/PhysRevLett.126.110501.<br>[28] T. Dai et al., "Topologically protected quantum entanglement emitters," Nature Photonics, vol. 16, no. 3, pp. 248-257, 2022/03/01 2022, doi: 10.1038/s41566-021-00944-2.
Presenters
-
Stuart Love
University of California, Irvine
Authors
-
Stuart Love
University of California, Irvine
-
Howard Ho Wai Lee
Department of Physics & Astronomy, University of California, Irvine, University of California, Irvine
-
Mohamad Idjadi
Nokia Bell Labs
-
Andrea Blanco-Redondo
CREOL, University of Central Florida
-
Farshid Ashtiani
Nokia Bell Labs