APS Logo

Programmable photonic topological insulators

ORAL

Abstract

In the past decade, the field of topological photonics has gained prominence exhibiting consequential effects in quantum information science, lasing, and large-scale integrated photonics. Many of these topological systems exhibit protected states, enabling robust travel along their edges without being affected by defects or disorder. Nonetheless, conventional topological structures often lack the flexibility for implementing different topological models and for tunability post-fabrication. Here we present a method to implement magnetic-like Hamiltonians supporting topologically protected edge modes on a general-purpose programmable silicon photonic mesh of interferometers. By reconfiguring the lattice onto a two-dimensional mesh of ring resonators with carefully tuned couplings, we show robust edge state transport even in the presence of manufacturing tolerance defects. We showcase the system’s reconfigurability by demonstrating topological insulator lattices of different sizes and shapes and introduce edge and bulk defects to underscore the robustness of the photonic edge states. Our study paves the way for the implementation of photonic topological insulators on general-purpose programmable photonics platforms.

Publication: References:<br>[1] Y. Ando, "Topological Insulator Materials," Journal of the Physical Society of Japan, vol. 82, no. 10, p. 102001, 2013/10/15 2013, doi: 10.7566/JPSJ.82.102001.<br>[2] K. von Klitzing, "The quantized Hall effect," Reviews of Modern Physics, vol. 58, no. 3, pp. 519-531, 07/01/ 1986, doi: 10.1103/RevModPhys.58.519.<br>[3] E. J. Meier, F. A. An, and B. Gadway, "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, vol. 7, no. 1, p. 13986, 2016/12/23 2016, doi: 10.1038/ncomms13986.<br>[4] L. Kou, Y. Ma, Z. Sun, T. Heine, and C. Chen, "Two-Dimensional Topological Insulators: Progress and Prospects," The Journal of Physical Chemistry Letters, vol. 8, no. 8, pp. 1905-1919, 2017/04/20 2017, doi: 10.1021/acs.jpclett.7b00222.<br>[5] S. Mukhopadhyay, P. K. Pal, S. Manna, C. Mitra, and A. Barman, "All-optical observation of giant spin transparency at the topological insulator BiSbTe1.5Se1.5/Co20Fe60B20 interface," NPG Asia Materials, vol. 15, no. 1, p. 57, 2023/10/20 2023, doi: 10.1038/s41427-023-00504-w.<br>[6] Y. Yang et al., "Realization of a three-dimensional photonic topological insulator," Nature, vol. 565, no. 7741, pp. 622-626, 2019/01/01 2019, doi: 10.1038/s41586-018-0829-0.<br>[7] M. Z. Hasan and J. E. Moore, "Three-dimensional topological insulators," Annu. Rev. Condens. Matter Phys., vol. 2, no. 1, pp. 55-78, 2011.<br>[8] T. Ozawa et al., "Topological photonics," Reviews of Modern Physics, vol. 91, no. 1, p. 015006, 03/25/ 2019, doi: 10.1103/RevModPhys.91.015006.<br>[9] H. Price et al., "Roadmap on topological photonics," Journal of Physics: Photonics, vol. 4, no. 3, p. 032501, 2022/06/27 2022, doi: 10.1088/2515-7647/ac4ee4.<br>[10] D. Pérez, I. Gasulla, P. Das Mahapatra, and J. Capmany, "Principles, fundamentals, and applications of programmable integrated photonics," Adv. Opt. Photon., vol. 12, no. 3, pp. 709-786, 2020/09/30 2020, doi: 10.1364/AOP.387155.<br>[11] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, "Robust reconfigurable electromagnetic pathways within a photonic topological insulator," Nature materials, vol. 15, no. 5, pp. 542-548, 2016.<br>[12] T. Cao, L. Fang, Y. Cao, N. Li, Z. Fan, and Z. Tao, "Dynamically reconfigurable topological edge state in phase change photonic crystals," Science Bulletin, vol. 64, no. 12, pp. 814-822, 2019/06/30/ 2019, doi: https://doi.org/10.1016/j.scib.2019.02.017.<br>[13] A. Darabi, M. Collet, and M. J. Leamy, "Experimental realization of a reconfigurable electroacoustic topological insulator," Proceedings of the National Academy of Sciences, vol. 117, no. 28, pp. 16138-16142, 2020.<br>[14] J.-P. Xia et al., "Programmable Coding Acoustic Topological Insulator," Advanced Materials, vol. 30, no. 46, p. 1805002, 2018/11/01 2018, doi: https://doi.org/10.1002/adma.201805002.<br>[15] J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, and T. J. Cui, "Reprogrammable plasmonic topological insulators with ultrafast control," Nature Communications, vol. 12, no. 1, p. 5468, 2021/09/15 2021, doi: 10.1038/s41467-021-25835-6.<br>[16] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, "Non-Hermitian topological light steering," Science, vol. 365, no. 6458, pp. 1163-1166, 2019/09/13 2019, doi: 10.1126/science.aay1064.<br>[17] Y. Yang et al., "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, vol. 15, no. 1, p. 50, 2024/01/02 2024, doi: 10.1038/s41467-023-44185-z.<br>[18] M. B. On, F. Ashtiani, D. Sanchez-Jacome, D. Perez-Lopez, S. J. B. Yoo, and A. Blanco-Redondo, "Programmable integrated photonics for topological Hamiltonians," Nature Communications, vol. 15, no. 1, p. 629, 2024/01/20 2024, doi: 10.1038/s41467-024-44939-3.<br>[19] T. Dai et al., "A programmable topological photonic chip," Nature Materials, vol. 23, no. 7, pp. 928-936, 2024/07/01 2024, doi: 10.1038/s41563-024-01904-1.<br>[20] B. Saleh and M. Teich, Fundamentals of Photonics, 2nd Edition. 2007.<br>[21] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, "Robust optical delay lines with topological protection," Nature Physics, vol. 7, no. 11, pp. 907-912, 2011/11/01 2011, doi: 10.1038/nphys2063.<br>[22] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, vol. 7, no. 12, pp. 1001-1005, 2013/12/01 2013, doi: 10.1038/nphoton.2013.274.<br>[23] E. Sánchez, A. López, and D. Pérez-López, "Simulation of Highly Coupled Programmable Photonic Circuits," Journal of Lightwave Technology, vol. 40, no. 19, pp. 6423-6434, 2022, doi: 10.1109/JLT.2022.3194973.<br>[24] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, "Topological protection of biphoton states," Science, vol. 362, no. 6414, pp. 568-571, 2018, doi: doi:10.1126/science.aau4296.<br>[25] S. Mittal, E. A. Goldschmidt, and M. Hafezi, "A topological source of quantum light," Nature, vol. 561, no. 7724, pp. 502-506, 2018/09/01 2018, doi: 10.1038/s41586-018-0478-3.<br>[26] M. Wang et al., "Topologically protected entangled photonic states," vol. 8, no. 8, pp. 1327-1335, 2019, doi: doi:10.1515/nanoph-2019-0058.<br>[27] Y.-J. Chang et al., "Symmetry-Induced Error Filtering in a Photonic Lieb Lattice," Physical Review Letters, vol. 126, no. 11, p. 110501, 03/16/ 2021, doi: 10.1103/PhysRevLett.126.110501.<br>[28] T. Dai et al., "Topologically protected quantum entanglement emitters," Nature Photonics, vol. 16, no. 3, pp. 248-257, 2022/03/01 2022, doi: 10.1038/s41566-021-00944-2.

Presenters

  • Stuart Love

    University of California, Irvine

Authors

  • Stuart Love

    University of California, Irvine

  • Howard Ho Wai Lee

    Department of Physics & Astronomy, University of California, Irvine, University of California, Irvine

  • Mohamad Idjadi

    Nokia Bell Labs

  • Andrea Blanco-Redondo

    CREOL, University of Central Florida

  • Farshid Ashtiani

    Nokia Bell Labs