APS Logo

Lattice Hamiltonian in superconducting multi-qubit processors - Part 1

ORAL

Abstract

In multi-qubit systems, collective effects emerge due to qubit interactions, which significantly impact the performance and fidelity of quantum operations. However, these effects are often overlooked in models that consider only pairwise qubit-qubit interactions, leading to potential errors in gate operations and limiting scalability. Building on the recent concept of the Lattice Hamiltonian [1], we developed a Hamiltonian for surface code processors, focusing on stray interactions [2,3]. Our results indicate that multi-qubit interactions can dominate two-body interactions in certain quantum computing domains, providing insight into why two-qubit gate performance has seen limited improvement over the past decades.

Publication: [1] Xuexin Xu, Manabputra, C. Vignes, M. H. Ansari, J. Martinis, Lattice Hamiltonians and Stray Interactions Within Quantum Processors, arXiv:2402.09145 (2024).<br>[2] Xuexin Xu and M. Ansari, ZZ freedom in two qubit gates, Phys. Rev. Applied 15, 064074 (2021).<br>[3] Jaseung Ku, Xuexin Xu, M. Brink, D C. McKay, J B. Hertzberg, M. H. Ansari, B.L.T. Plourde, Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System, Phys. Rev. Lett. 125, 200504 (2020).<br>[4] Xuexin Xu, K.Kaur, C.Vignes, M.H. Ansari, J M. Martinis, Lattice Hamiltonian in superconducting multi-qubit processors (In preparation).

Presenters

  • Kuljeet Kaur

    Forschungszentrum Jülich GmbH

Authors

  • Kuljeet Kaur

    Forschungszentrum Jülich GmbH

  • Xuexin Xu

    Forschungszentrum Juelich GmbH, Forschungszentrum Jülich GmbH

  • Chloé Vignes

    Forschungszentrum Jülich, Forschungszentrum Jülich GmbH, MIT

  • Mohammad H Ansari

    Forschungszentrum Juelich GmbH, Forschungszentrum Jülich GmbH

  • John M Martinis

    Qolab Inc, University of California, Santa Barbara, Qolab, Qolab, Inc