APS Logo

Simulation of Defects: Interplay of Structural and Electronic Properties; Metropolis Award Presentation

FOCUS · MAR-C49 · ID: 3104348







Presentations

  • Optically excited states of point defects in hexagonal boron nitride

    ORAL · Invited

    Publication: [1] A. Kirchhoff, T. Deilmann, P. Krueger, and M. Rohlfing, Phys. Rev. B 106, 045118 (2022).<br>[2] A. Kirchhoff, T. Deilmann, and M. Rohlfing, Phys. Rev. B 109, 085127 (2024).

    Presenters

    • Michael Rohlfing

      University of Muenster

    Authors

    • Michael Rohlfing

      University of Muenster

    View abstract →

  • Defect and Domain-Wall Engineering on GaN Facets for Enhanced Water Splitting and Hydrogen Production

    ORAL

    Presenters

    • Shuaishuai Yuan

      McGill University

    Authors

    • Shuaishuai Yuan

      McGill University

    • Zhanghao Zhouyin

      McGill University

    • Ding Wang

      University of Michigan

    • Ding Wang

      University of Michigan

    • Yuyang Pan

      University of Michigan

    • Gunther Andersson

      Flinders University

    • Gregory Metha

      University of Adelaide

    • Zetian Mi

      University of Michigan

    • Hong Guo

      McGill University

    View abstract →

  • Tailoring Semiconductor Defect Properties using Multi-fidelity Graph Neural Networks and Active Learning

    ORAL

    Publication: 1. M. H. Rahman et al., "Accelerating defect predictions in semiconductors using graph neural networks," APL Machine Learning, 2, 0166122 (2024)

    Presenters

    • Md Habibur Rahman

      Purdue University School of Materials Engineering

    Authors

    • Md Habibur Rahman

      Purdue University School of Materials Engineering

    • Arun Kumar Mannodi Kanakkithodi

      Purdue University

    View abstract →

  • Brillouin Zone Sampling in ONETEP

    ORAL

    Presenters

    • Chengcheng Xiao

      Imperial College London

    Authors

    • Chengcheng Xiao

      Imperial College London

    • Arash A Mostofi

      Imperial College London

    • Peter D Haynes

      Imperial College London

    View abstract →

  • CASSCF for large active spaces using the STP-DAS framework

    ORAL

    Presenters

    • Shiv Upadhyay

      University of Washington

    Authors

    • Shiv Upadhyay

      University of Washington

    • Agam Shayit

      University of Washington

    • Hang Hu

      University of Washington

    • Rajat Majumder

      University of Washington

    • Alexandros Peltekis

      University of Washington

    • Xiaosong Li

      University of Washington

    View abstract →

  • Dielectric loss from defects and impurities

    ORAL

    Publication: M. E. Turiansky and C. G. Van de Walle, APL Quantum 1, 026114 (2024).

    Presenters

    • Mark E Turiansky

      University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.

    Authors

    • Mark E Turiansky

      University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.

    • Chris G Van de Walle

      University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.

    View abstract →

  • Modelling energy surfaces of defects in solids

    ORAL · Invited

    Publication: - Mosquera-Lois, I. & Kavanagh, S. R. In search of hidden defects. Matter (2021).<br>- Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: Navigating the defect configurational landscape. Journal of Open Source Software (2022).<br>- Kavanagh et al. doped: Python toolkit for robust and repeatable charged defect supercell calculations. Journal of Open Source Software (2024).<br>- Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Identifying the ground state structures of point defects in solids. npj Comput Mater (2023).<br>- Mosquera-Lois, I., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Machine-learning structural reconstructions for accelerated point defect calculations. npj Comput Mater (2024).<br>- Kavanagh, S. R., Identifying Split Vacancies using Foundational Machine Learning Models. In Submission.

    Presenters

    • Seán R Kavanagh

      Harvard University

    Authors

    • Seán R Kavanagh

      Harvard University

    View abstract →