APS Logo

Automated computational workflows for muon spin spectroscopy

ORAL

Abstract

Positive muon spin spectroscopy is a powerful experimental technique used to characterize several physical phenomena, from magnetic to superconducting phases [1]. Complementary computational methods can detect the muon stopping sites and quantify the microscopic interactions underlying the experimental signal, significantly increasing the predictive power of this technique [2]. Here, we present a set of algorithms and workflows devoted to the ab-initio muon characterization in crystalline solids [3]. In particular, we adopt density functional theory (DFT) in the so-called DFT+μ procedure [4,5], where the positive muon is modeled as a hydrogen impurity. The workflows are implemented in the AiiDA platform [6]. A user-friendly graphical interface, embedded in the AiiDAlab platform [7], is demonstrated, offering an intuitive means to conduct muon simulations routinely alongside experiments.

[1] S. J. Blundell, T. Lancaster, Appl. Phys. Rev. 10, 021316 (2023)

[2] P. Bonfà et al.,Phys. Rev. Mat. 5, 044411 (2021)

[3] IJ Onuorah et al., arXiv preprint arXiv:2408.16722 (2024)

[4] J. S. Mӧller et al., Phys. Rev. B 87, 121108 (2013)

[5] F. Bernardini et al., Phys. Rev. B 87, 115148 (2013)

[6] S.P. Huber et al., Scientific Data 7, 300 (2020)

[7] A. V. Yakutovich et al., Comp. Mat. Sci. 188, 110165 (2021)

Publication: IJ Onuorah et al., arXiv preprint arXiv:2408.16722 (2024)

Presenters

  • Miki Bonacci

    Paul Scherrer Institut

Authors

  • Miki Bonacci

    Paul Scherrer Institut

  • Ifeanyi J Onuorah

    University of Parma

  • Muhammad M Isah

    University of Bologna

  • Marcello Mazzani

    University of Parma

  • Roberto De Renzi

    University of Parma

  • Giovanni Pizzi

    Paul Scherrer Institute, Paul Scherrer Institut, Materials software and data group, Paul Scherrer Institut (PSI)

  • Pietro Bonfa

    University of Parma