High Fidelity Entangling Gates on a Hubbard Fermionic Quantum Computer
ORAL
Abstract
Our machine allows us to encode single-particle [3] or two-particle qubits in isolated double wells. Using interacting fermions with opposite spins in double wells, we realize two-qubit entangling gates with fidelities above 99% on up to 120 atoms in parallel. The estimated two-qubit gate infidelity is lower than the threshold needed for certain fault-tolerant models. This platform of fermionic qubits holds significant potential for quantum computation of electronic systems, such as the simulation of molecules.
–
Publication: [1] D. Bourgund, T. Chalopin, P. Bojović, H. Schlömer, S. Wang, T. Franz, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, T. A Hilker, arXiv: 2312.14156 (accepted in Nature)<br>[2] H. Schlömer, H. Lange, T. Franz, T. Chalopin, P. Bojović, S. Wang, I. Bloch, T. A Hilker, F. Grusdt, A. Bohrdt, arXiv: 2406.02551 (accepted in PRX Quantum)<br>[3] T. Chalopin, P. Bojovic, D. Bourgund, S. Wang, T. Franz, I. Bloch, T. A Hilker, arXiv: 2405.19322
Presenters
-
Petar Bojović
Max Planck Institute of Quantum Optics
Authors
-
Petar Bojović
Max Planck Institute of Quantum Optics
-
Titus Franz
Max Planck Institute of Quantum Optics
-
Si Wang
Max Planck Institute of Quantum Optics
-
Johannes Obermeyer
Max Planck Institute of Quantum Optics
-
Dorothee Tell
Max Planck Institute of Quantum Optics
-
Marnix Barendregt
Max Planck Institute of Quantum Optics
-
Philipp M Preiss
Max Planck Institute of Quantum Optics
-
Immanuel Bloch
Max Planck Institute of Quantum Optics
-
Timon A Hilker
Max Planck Institute of Quantum Optics