APS Logo

High Fidelity Entangling Gates on a Hubbard Fermionic Quantum Computer

ORAL

Abstract

In our quantum gas microscope, we load fermionic 6Li atoms into optical superlattices and image the local density and spin by performing site-resolved projective measurements. I will present how the exceptional control of optical superlattices and local measurements enables us to realize building blocks for digital quantum computation and to perform analog quantum simulation [1, 2].

Our machine allows us to encode single-particle [3] or two-particle qubits in isolated double wells. Using interacting fermions with opposite spins in double wells, we realize two-qubit entangling gates with fidelities above 99% on up to 120 atoms in parallel. The estimated two-qubit gate infidelity is lower than the threshold needed for certain fault-tolerant models. This platform of fermionic qubits holds significant potential for quantum computation of electronic systems, such as the simulation of molecules.

Publication: [1] D. Bourgund, T. Chalopin, P. Bojović, H. Schlömer, S. Wang, T. Franz, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, T. A Hilker, arXiv: 2312.14156 (accepted in Nature)<br>[2] H. Schlömer, H. Lange, T. Franz, T. Chalopin, P. Bojović, S. Wang, I. Bloch, T. A Hilker, F. Grusdt, A. Bohrdt, arXiv: 2406.02551 (accepted in PRX Quantum)<br>[3] T. Chalopin, P. Bojovic, D. Bourgund, S. Wang, T. Franz, I. Bloch, T. A Hilker, arXiv: 2405.19322

Presenters

  • Petar Bojović

    Max Planck Institute of Quantum Optics

Authors

  • Petar Bojović

    Max Planck Institute of Quantum Optics

  • Titus Franz

    Max Planck Institute of Quantum Optics

  • Si Wang

    Max Planck Institute of Quantum Optics

  • Johannes Obermeyer

    Max Planck Institute of Quantum Optics

  • Dorothee Tell

    Max Planck Institute of Quantum Optics

  • Marnix Barendregt

    Max Planck Institute of Quantum Optics

  • Philipp M Preiss

    Max Planck Institute of Quantum Optics

  • Immanuel Bloch

    Max Planck Institute of Quantum Optics

  • Timon A Hilker

    Max Planck Institute of Quantum Optics